
Katrin SchĤfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7586317/publications.pdf Version: 2024-02-01

KATDIN SCHÂBED

#	Article	IF	CITATIONS
1	Tubulin-folding cofactor E deficiency promotes vascular dysfunction by increased endoplasmic reticulum stress. European Heart Journal, 2022, 43, 488-500.	1.0	6
2	EPCR-PAR1 biased signaling regulates perfusion recovery and neovascularization in peripheral ischemia. JCI Insight, 2022, 7, .	2.3	3
3	When big eaters stop feasting: loss of metabolic control in macrophages exacerbates hypertension in obesity. Cardiovascular Research, 2021, 117, 351-353.	1.8	1
4	Specialized regulatory T cells control venous blood clot resolution through SPARC. Blood, 2021, 137, 1517-1526.	0.6	27
5	Brainâ€Derived Neurotrophic Factor Expression and Signaling in Different Perivascular Adipose Tissue Depots of Patients With Coronary Artery Disease. Journal of the American Heart Association, 2021, 10, e018322.	1.6	17
6	Colocalization of Erythrocytes and Vascular Calcification in Human Atherosclerosis: A Systematic Histomorphometric Analysis. TH Open, 2021, 05, e113-e124.	0.7	3
7	Role of angiopoietin-2 in venous thrombus resolution and chronic thromboembolic disease. European Respiratory Journal, 2021, 58, 2004196.	3.1	14
8	Extracellular Vesicles and Thrombosis: Update on the Clinical and Experimental Evidence. International Journal of Molecular Sciences, 2021, 22, 9317.	1.8	35
9	The gut microbiota instructs the hepatic endothelial cell transcriptome. IScience, 2021, 24, 103092.	1.9	16
10	Age-Dependent and -Independent Effects of Perivascular Adipose Tissue and Its Paracrine Activities during Neointima Formation. International Journal of Molecular Sciences, 2020, 21, 282.	1.8	12
11	Activated Endothelial TGFÎ ² 1 Signaling Promotes Venous Thrombus Nonresolution in Mice Via Endothelin-1. Circulation Research, 2020, 126, 162-181.	2.0	37
12	Letter by Tziakas et al Regarding Article, "Aortic Valve Stenosis: From Basic Mechanisms to Novel Therapeutic Targets― Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e180-e181.	1.1	0
13	Increased Lymphangiogenesis and Lymphangiogenic Growth Factor Expression in Perivascular Adipose Tissue of Patients with Coronary Artery Disease. Journal of Clinical Medicine, 2019, 8, 1000.	1.0	12
14	Role of Endothelial Cells in Acute and Chronic Thrombosis. Hamostaseologie, 2019, 39, 128-139.	0.9	41
15	Potential Involvement of Osteopontin in Inflammatory and Fibrotic Processes in Pulmonary Embolism and Chronic Thromboembolic Pulmonary Hypertension. Thrombosis and Haemostasis, 2019, 119, 1332-1346.	1.8	13
16	Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Frontiers in Cardiovascular Medicine, 2019, 6, 20.	1.1	100
17	Lysed Erythrocyte Membranes Promote Vascular Calcification. Circulation, 2019, 139, 2032-2048.	1.6	37
18	Endothelial Leptin Receptor Deletion Promotes Cardiac Autophagy and Angiogenesis Following	1.6	35

18			/	B	16 9
10	Pressure Overload by Suppressing Akt/mTOR Sig	rnaling Circulatia	n Ucart Failura 2010	12 - 00 = (22)	1.0 0
	Pressure Overload by Subdressing ARUTHOR Sig	maining. Circulatio	II. Heart Failure, 2015	7. 1Z. EUUDDZZ.	

#	Article	IF	CITATIONS
19	Inducible Knockdown of Endothelial Protein Tyrosine Phosphatase-1B Promotes Neointima Formation in Obese Mice by Enhancing Endothelial Senescence. Antioxidants and Redox Signaling, 2019, 30, 927-944.	2.5	13
20	The endothelial tumor suppressor p53 is essential for venous thrombus formation in aged mice. Blood Advances, 2018, 2, 1300-1314.	2.5	16
21	Pulmonary Arterial Hypertension and Endothelial Dysfunction Is Linked to NADPH Oxidase-Derived Superoxide Formation in Venous Thrombosis and Pulmonary Embolism in Mice. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.	1.9	23
22	Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1683-1697.	1.1	38
23	Interferon lambda1/ILâ€⊋9 and inorganic polyphosphate are novel regulators of neutrophilâ€driven thromboinflammation. Journal of Pathology, 2017, 243, 111-122.	2.1	79
24	From thrombosis to fibrosis in chronic thromboembolic pulmonary hypertension. Thrombosis and Haemostasis, 2017, 117, 769-783.	1.8	53
25	Absence of transforming growth factor beta 1 in murine platelets reduces neointima formation without affecting arterial thrombosis. Thrombosis and Haemostasis, 2017, 117, 1782-1797.	1.8	9
26	Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload. Journal of Clinical Investigation, 2017, 127, 4285-4296.	3.9	31
27	Local Application of Leptin Antagonist Attenuates Angiotensin Il–Induced Ascending Aortic Aneurysm and Cardiac Remodeling. Journal of the American Heart Association, 2016, 5, .	1.6	21
28	Endothelial deletion of protein tyrosine phosphatase-1B protects against pressure overload-induced heart failure in mice. Cardiovascular Research, 2016, 111, 204-216.	1.8	43
29	Gut Microbiota Promote Angiotensin Il–Induced Arterial Hypertension and Vascular Dysfunction. Journal of the American Heart Association, 2016, 5, .	1.6	281
30	Endothelial cell senescence and thrombosis: Ageing clots. Thrombosis Research, 2016, 147, 36-45.	0.8	52
31	Innate Effector-Memory T-Cell Activation Regulates Post-Thrombotic Vein Wall Inflammation and Thrombus Resolution. Circulation Research, 2016, 119, 1286-1295.	2.0	61
32	CCL5 deficiency reduces neointima formation following arterial injury and thrombosis in apolipoprotein E-deficient mice. Thrombosis Research, 2016, 144, 136-143.	0.8	8
33	Differences between perivascular adipose tissue surrounding the heart and the internal mammary artery: possible role for the leptin-inflammation-fibrosis-hypoxia axis. Clinical Research in Cardiology, 2016, 105, 887-900.	1.5	48
34	Circulating Endothelial Cells Expressing the Angiogenic Transcription Factor Krüppelâ€Like Factor 4 are Decreased in Patients with Coronary Artery Disease. Microcirculation, 2015, 22, 700-710.	1.0	5
35	Differential PI3K signal transduction in obesityâ€associated cardiac hypertrophy and response to ischemia. Obesity, 2015, 23, 90-99.	1.5	13
36	Endothelial p53 Deletion Improves Angiogenesis and Prevents Cardiac Fibrosis and Heart Failure Induced by Pressure Overload in Mice. Journal of the American Heart Association, 2015, 4, .	1.6	104

#	Article	IF	CITATIONS
37	The macrophage-TCRαβ is a cholesterol-responsive combinatorial immune receptor and implicated in atherosclerosis. Biochemical and Biophysical Research Communications, 2015, 456, 59-65.	1.0	34
38	A novel H-FABP assay and a fast prognostic score for risk assessment of normotensive pulmonary embolism. Thrombosis and Haemostasis, 2014, 112, 996-1003.	1.8	56
39	Melusin protects from cardiac rupture and improves functional remodelling after myocardial infarction. Cardiovascular Research, 2014, 101, 97-107.	1.8	46
40	<i>In Vitro</i> and <i>In Vivo</i> Effects of Human Monocytes and their Subsets on New Vessel Formation. Microcirculation, 2014, 21, 148-158.	1.0	7
41	Mechanisms Linking Leptin to Arterial and Venous Thrombosis: Potential Pharmacological Targets. Current Pharmaceutical Design, 2014, 20, 635-640.	0.9	18
42	Importance of leptin signaling and signal transducer and activator of transcription-3 activation in mediating the cardiac hypertrophy associated with obesity. Journal of Translational Medicine, 2013, 11, 170.	1.8	44
43	Stage-dependent detection of CD14+ and CD16+ cells in the human heart after myocardial infarction. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2013, 463, 459-469.	1.4	11
44	A simple score for rapid risk assessment of non-high-risk pulmonary embolism. Clinical Research in Cardiology, 2013, 102, 73-80.	1.5	51
45	Erythrocyte membrane cholesterol and lipid core growth in a rabbit model of atherosclerosis: Modulatory effects of rosuvastatin. International Journal of Cardiology, 2013, 170, 173-181.	0.8	19
46	Circulating regulatory T cells are reduced in obesity and may identify subjects at increased metabolic and cardiovascular risk. Obesity, 2013, 21, 461-468.	1.5	151
47	Leptin promotes neointima formation and smooth muscle cell proliferation via NADPH oxidase activation and signalling in caveolin-rich microdomains. Cardiovascular Research, 2013, 99, 555-565.	1.8	37
48	Leptin-Dependent and Leptin-Independent Paracrine Effects of Perivascular Adipose Tissue on Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 980-987.	1.1	57
49	Atheroprotective Krüppel-like factor 4 is downregulated in monocyte subsets of patients with coronary artery disease. Thrombosis and Haemostasis, 2013, 110, 1080-1082.	1.8	4
50	Unfavourable consequences of chronic cardiac HIF-1α stabilization. Cardiovascular Research, 2012, 94, 77-86.	1.8	112
51	Differentiation of Multipotent Adult Germline Stem Cells Derived from Mouse Testis into Functional Endothelial Cells. Journal of Vascular Research, 2012, 49, 207-220.	0.6	6
52	Leptin promotes the mobilization of vascular progenitor cells and neovascularization by NOX2-mediated activation of MMP9. Cardiovascular Research, 2012, 93, 170-180.	1.8	44
53	The Beneficial Effects of a Direct Thrombin Inhibitor, Dabigatran Etexilate, on the Development and Stability of Atherosclerotic Lesions in Apolipoprotein E-deficient Mice. Cardiovascular Drugs and Therapy, 2012, 26, 367-374.	1.3	58
54	Effect of the Factor Xa Inhibitor Rivaroxaban on Arterial Thrombosis in Wild-Type and Apolipoprotein E-Deficient Mice. Thrombosis Research, 2012, 130, 793-798.	0.8	13

#	Article	IF	CITATIONS
55	Effect of smoking cessation on the number and adhesive properties of early outgrowth endothelial progenitor cells. International Journal of Cardiology, 2011, 152, 61-69.	0.8	20
56	Adipokines and thrombosis. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 864-871.	0.9	44
57	Response to Letter Regarding Article, "Differential Cardiac Remodeling in Preload Versus Afterload― Circulation, 2011, 123, .	1.6	0
58	Telethonin Deficiency Is Associated With Maladaptation to Biomechanical Stress in the Mammalian Heart. Circulation Research, 2011, 109, 758-769.	2.0	78
59	Update on the cardiovascular risk in obesity: endocrine and paracrine role of the adipose tissue. Hellenic Journal of Cardiology, 2011, 52, 327-36.	0.4	9
60	Impaired Ca2+-handling in HIF-1α+/â^' mice as a consequence of pressure overload. Pflugers Archiv European Journal of Physiology, 2010, 459, 569-577.	1.3	20
61	Leptin Enhances the Potency of Circulating Angiogenic Cells Via Src Kinase and Integrin αvβ5. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 200-206.	1.1	70
62	Overexpression of Integrin β5 Enhances the Paracrine Properties of Circulating Angiogenic Cells via Src Kinase–Mediated Activation of STAT3. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1398-1406.	1.1	36
63	Effects of Obesity and Weight Loss on the Functional Properties of Early Outgrowth Endothelial Progenitor Cells. Journal of the American College of Cardiology, 2010, 55, 357-367.	1.2	61
64	Elevated Heart-Type Fatty Acid-Binding Protein Levels on Admission Predict an Adverse Outcome in Normotensive Patients With Acute Pulmonary Embolism. Journal of the American College of Cardiology, 2010, 55, 2150-2157.	1.2	126
65	Differential Cardiac Remodeling in Preload Versus Afterload. Circulation, 2010, 122, 993-1003.	1.6	267
66	Prolactin as a modulator of platelet function and thrombosis: The end of the story, or a new beginning?. Thrombosis and Haemostasis, 2009, 101, 991-992.	1.8	4
67	Rosuvastatin reduces atherosclerotic lesions and promotes progenitor cell mobilisation and recruitment in apolipoprotein E knockout mice. Atherosclerosis, 2009, 205, 63-73.	0.4	23
68	Heart-type fatty acid-binding protein for risk assessment of chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2008, 31, 1024-1029.	3.1	62
69	Leptin Enhances the Recruitment of Endothelial Progenitor Cells Into Neointimal Lesions After Vascular Injury by Promoting Integrin-Mediated Adhesion. Circulation Research, 2008, 103, 536-544.	2.0	92
70	Absence of leptin resistance in platelets from morbidly obese individuals may contribute to the increased thrombosis risk in obesity. Thrombosis and Haemostasis, 2008, 100, 1123-1129.	1.8	34
71	Laminin-α4 and Integrin-Linked Kinase Mutations Cause Human Cardiomyopathy Via Simultaneous Defects in Cardiomyocytes and Endothelial Cells. Circulation, 2007, 116, 515-525.	1.6	206
72	Leptin signalling and leptin-mediated activation of human platelets: Importance of JAK2 and the phospholipases Cl ³ 2 and A2. Thrombosis and Haemostasis, 2007, 98, 1063-1071.	1.8	37

#	Article	IF	CITATIONS
73	Lack of urokinase plasminogen activator promotes progression and instability of atherosclerotic lesions in apolipoprotein E-knockout mice. Thrombosis and Haemostasis, 2007, 98, 220-227.	1.8	18
74	Expression of the leptin receptor in different types of vascular lesions. Histochemistry and Cell Biology, 2007, 128, 323-333.	0.8	34
75	Leptin signalling and leptin-mediated activation of human platelets: importance of JAK2 and the phospholipases Cgamma2 and A2. Thrombosis and Haemostasis, 2007, 98, 1063-71.	1.8	8
76	Secondhand smoke as an acute threat for the cardiovascular system: a change in paradigm. European Heart Journal, 2006, 27, 386-392.	1.0	216
77	Plasminogen Activator Inhibitor-1 From Bone Marrow–Derived Cells Suppresses Neointimal Formation After Vascular Injury in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1254-1259.	1.1	24
78	Heart-type fatty acid-binding protein permits early risk stratification of pulmonary embolism. European Heart Journal, 2006, 28, 224-229.	1.0	119
79	Successful silencing of plasminogen activator inhibitor-1 in human vascular endothelial cells using small interfering RNA. Thrombosis and Haemostasis, 2006, 95, 857-864.	1.8	9
80	Rosuvastatin exerts favourable effects on thrombosis and neointimal growth in a mouse model of endothelial injury. Thrombosis and Haemostasis, 2005, 93, 145-152.	1.8	39
81	Exercise Training Reduces Neointimal Growth and Stabilizes Vascular Lesions Developing After Injury in Apolipoprotein E–Deficient Mice. Circulation, 2004, 109, 386-392.	1.6	64
82	Leptin Promotes Vascular Remodeling and Neointimal Growth in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 112-117.	1.1	212
83	Inhibition of Endogenous Leptin Protects Mice From Arterial and Venous Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2196-2201.	1.1	86
84	Enhanced Thrombosis in Atherosclerosis-Prone Mice Is Associated With Increased Arterial Expression of Plasminogen Activator Inhibitor-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 2097-2103.	1.1	82
85	Cytokine-induced Down-regulation of zfm1/Splicing Factor-1 Promotes Smooth Muscle Cell Proliferation. Journal of Biological Chemistry, 2002, 277, 6582-6589.	1.6	22
86	Do PAI-1 and Vitronectin Promote or Inhibit Neointima Formation?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1943-1945.	1.1	39
87	Different Mechanisms of Increased Luminal Stenosis After Arterial Injury in Mice Deficient for Urokinase- or Tissue-Type Plasminogen Activator. Circulation, 2002, 106, 1847-1852.	1.6	77
88	Disruption of the plasminogen activator inhibitorâ€l gene reduces the adiposity and improves the metabolic profile of genetically obese and diabetic ob/ob mice. FASEB Journal, 2001, 15, 1840-1842.	0.2	166
89	Plasminogen Activator Inhibitor-1 and Its Cofactor Vitronectin Stabilize Arterial Thrombi After Vascular Injury in Mice. Circulation, 2001, 103, 576-583.	1.6	155
90	The Prothrombotic Effects of Leptin. Annals of the New York Academy of Sciences, 2001, 947, 134-142.	1.8	49

#	Article	IF	CITATIONS
91	Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. Journal of Clinical Investigation, 2001, 108, 1533-1540.	3.9	305
92	Characterization of the Han:SPRD rat model for hereditary polycystic kidney disease. Kidney International, 1994, 46, 134-152.	2.6	121