Yong-Jun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7586243/publications.pdf

Version: 2024-02-01

1040056 1058476 14 256 9 14 citations h-index g-index papers 14 14 14 202 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The effect of CuO–ZnO–Al2O3 catalyst structure on the ethanol synthesis from syngas. Catalysis Communications, 2013, 34, 69-72.	3.3	46
2	Effect of preparation method on CuZnAl catalysts for ethanol synthesis from syngas. Applied Surface Science, 2015, 356, 124-127.	6.1	41
3	Investigation of copper precursors in the synthesis of higher alcohols from syngas over CuZnAl catalysts without promoters. Physical Chemistry Chemical Physics, 2018, 20, 18790-18799.	2.8	25
4	Synergy between Active Sites of Ternary CuZnAlOOH Catalysts in CO Hydrogenation to Ethanol and Higher Alcohols. ACS Sustainable Chemistry and Engineering, 2020, 8, 6634-6646.	6.7	25
5	CO hydrogenation to higher alcohols over CuZnAl catalysts without promoters: Effect of pH value in catalyst preparation. Fuel Processing Technology, 2017, 167, 575-581.	7.2	23
6	A study on deactivation of Cu–Zn–Al catalyst for higher alcohols synthesis. RSC Advances, 2015, 5, 99023-99027.	3.6	19
7	Higher alcohols synthesis from syngas over P-promoted non-noble metal Cu-based catalyst. Fuel, 2017, 208, 423-429.	6.4	18
8	Higher alcohols synthesis from syngas over lanthanum-promoted CuZnAl catalyst. Journal of Energy Chemistry, 2018, 27, 319-325.	12.9	16
9	Influence of Si on the performance of higher alcohols synthesis from syngas over CuZnSiAl catalysts without alkalis or Fischer-Tropsch elements. International Journal of Hydrogen Energy, 2017, 42, 24757-24766.	7.1	13
10	Insight into the structural sensitivity of CuZnAl catalysts for CO hydrogenation to alcohols. Fuel, 2022, 323, 124265.	6.4	9
11	Promotional Influence of Hydroxyl Complexing Agent on Ethanol Synthesis from Syngas Over CuZnAl Catalysts Without Other Metal Promoters. Catalysis Letters, 2018, 148, 3477-3485.	2.6	6
12	Investigation of alkaline complexant on ethanol synthesis from syngas over slurry CuZnAlOOH catalyst. International Journal of Hydrogen Energy, 2021, 46, 21889-21900.	7.1	6
13	Insight into the effect of particle density and size on the hydrodynamics of a particular slurry bubble column reactor by CFD-PBM approach. Powder Technology, 2022, 400, 117264.	4.2	6
14	In-Situ FT-IR Spectroscopy Investigation of CH4 and CO2 Reaction. Catalysts, 2020, 10, 131.	3.5	3