
Zhibin Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7586093/publications.pdf Version: 2024-02-01

7HIBIN YII

#	Article	IF	CITATIONS
1	Modeling and analysis of a dual-acoustic-driver thermoacoustic heat pump. Thermal Science and Engineering Progress, 2022, 30, 101270.	1.3	7
2	Life cycle assessment of biodiesel production from rapeseed oil: Influence of process parameters and scale. Bioresource Technology, 2022, 360, 127532.	4.8	29
3	Experimental investigation of an Organic Rankine cycle system using an oil-free scroll expander for low grade heat recovery. International Journal of Green Energy, 2021, 18, 812-821.	2.1	7
4	Mode transition in a standing-wave thermoacoustic engine: A numerical study. Journal of Sound and Vibration, 2021, 504, 116119.	2.1	22
5	Multi-physics coupling in thermoacoustic devices: A review. Renewable and Sustainable Energy Reviews, 2021, 146, 111170.	8.2	74
6	Heat exchangers for cooling supercritical carbon dioxide and heat transfer enhancement: A review and assessment. Energy Reports, 2021, 7, 4085-4105.	2.5	34
7	An electretâ€based thermoacousticâ€electrostatic power generator. International Journal of Energy Research, 2020, 44, 2298-2305.	2.2	20
8	Large eddy simulation of thermally induced oscillatory flow in a thermoacoustic engine. Applied Energy, 2020, 276, 115458.	5.1	30
9	Roadblocks to Low Temperature District Heating. Energies, 2020, 13, 5893.	1.6	10
10	Particle Image Velocimetry (PIV) experiment of the buoyant flow field of a thermal chimney model designed for geothermal power plants. International Journal of Green Energy, 2020, 17, 951-960.	2.1	4
11	Investigation of a refrigeration system based on combined supercritical CO2 power and transcritical CO2 refrigeration cycles by waste heat recovery of engine. International Journal of Refrigeration, 2020, 118, 470-482.	1.8	51
12	Underlying physics of limit-cycle, beating and quasi-periodic oscillations in thermoacoustic devices. Journal Physics D: Applied Physics, 2020, 53, 215502.	1.3	19
13	Theoretical analysis of a regenerative supercritical carbon dioxide Brayton cycle/organic Rankine cycle dual loop for waste heat recovery of a diesel/natural gas dual-fuel engine. Energy Conversion and Management, 2019, 197, 111845.	4.4	70
14	An Investigation into the Limitations of Low Temperature District Heating on Traditional Tenement Buildings in Scotland. Energies, 2019, 12, 2603.	1.6	8
15	Experimental Investigation of a Small-Scale ORC Power Plant Using a Positive Displacement Expander with and without a Regenerator. Energies, 2019, 12, 1452.	1.6	4
16	District Heating Challenges for the UK. Energies, 2019, 12, 310.	1.6	37
17	A Waste Heat-Driven Cooling System Based on Combined Organic Rankine and Vapour Compression Refrigeration Cycles. Applied Sciences (Switzerland), 2019, 9, 4242.	1.3	15
18	A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines. Applied Energy, 2017, 190, 574-590.	5.1	101

Zhibin Yu

#	Article	IF	CITATIONS
19	Using a side-branched volume to tune the acoustic field in a looped-tube travelling-wave thermoacoustic engine with a RC load. Energy Conversion and Management, 2017, 150, 814-821.	4.4	17
20	Dynamic control strategy of a distillation system for a composition-adjustable organic Rankine cycle. Energy, 2017, 141, 1038-1051.	4.5	29
21	Investigation on efficiency improvement of a Kalina cycle by sliding condensation pressure method. Energy Conversion and Management, 2017, 151, 123-135.	4.4	27
22	Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery. Energy, 2017, 118, 753-775.	4.5	65
23	Numerical investigation of a looped-tube traveling-wave thermoacoustic generator with a bypass pipe. Energy Procedia, 2017, 142, 1474-1481.	1.8	4
24	Numerical Analysis of an Organic Rankine Cycle with Adjustable Working Fluid Composition, a Volumetric Expander and a Recuperator. Energies, 2017, 10, 440.	1.6	10
25	A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions. Applied Energy, 2016, 171, 581-591.	5.1	95
26	A numerical analysis of a composition-adjustable Kalina cycle power plant for power generation from low-temperature geothermal sources. Applied Energy, 2016, 180, 834-848.	5.1	56
27	Numerical investigation of a looped-tube travelling-wave thermoacoustic engine with a bypass pipe. Energy, 2016, 112, 111-120.	4.5	11
28	A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators. Applied Energy, 2015, 137, 9-17.	5.1	58
29	Experimental study of heat transfer in oscillatory gas flow inside a parallel-plate channel with imposed axial temperature gradient. International Journal of Heat and Mass Transfer, 2014, 77, 1023-1032.	2.5	39
30	NUMERICAL ANALYSIS OF A THERMALLY DRIVEN THERMOACOUSTIC HEAT PUMP FOR LOW-GRADE HEAT RECOVERY. Computational Thermal Sciences, 2014, 6, 317-327.	0.5	4
31	Non-linear phenomena occurring during the start-up process of a travelling-wave looped-tube thermoacoustic engine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226, 822-836.	0.8	12
32	Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy. Applied Energy, 2012, 99, 135-145.	5.1	152
33	DEVELOPMENT OF EXPERIMENTAL METHODS TO CAPTURE THE UNSTEADY TEMPERATURE FIELD DISTRIBUTIONS IN THERMOACOUSTIC DEVICES. Experimental Techniques, 2011, 35, 68-75.	0.9	0
34	Design and experimental validation of looped-tube thermoacoustic engine. Journal of Thermal Science, 2011, 20, 423-429.	0.9	12
35	A method of characterising performance of audio loudspeakers for linear alternator applications in low-cost thermoacoustic electricity generators. Applied Acoustics, 2011, 72, 260-267.	1.7	30
36	Investigation into the Strouhal numbers associated with vortex shedding from parallel-plate thermoacoustic stacks in oscillatory flow conditions. European Journal of Mechanics, B/Fluids, 2011, 30, 206-217.	1.2	18

Zhibin Yu

#	Article	IF	CITATIONS
37	Selection and experimental evaluation of low-cost porous materials for regenerator applications in thermoacoustic engines. Materials & Design, 2011, 32, 217-228.	5.1	51
38	Fishbone-like instability in a looped-tube thermoacoustic engine. Journal of the Acoustical Society of America, 2010, 128, EL188-EL194.	0.5	23
39	Impact of acoustic impedance and flow resistance on the power output capacity of the regenerators in travelling-wave thermoacoustic engines. Energy Conversion and Management, 2010, 51, 350-359.	4.4	52
40	Vortex shedding flow patterns and their transitions in oscillatory flows past parallel-plate thermoacoustic stacks. Experimental Thermal and Fluid Science, 2010, 34, 954-965.	1.5	34
41	Application of laser-based instrumentation for measurement of time-resolved temperature and velocity fields in the thermoacoustic system. International Journal of Thermal Sciences, 2010, 49, 1688-1701.	2.6	36
42	Design of a Low-Cost Thermoacoustic Electricity Generator and Its Experimental Verification. , 2010, , .		2
43	Entrance effects in the channels of the parallel plate stack in oscillatory flow conditions. Experimental Thermal and Fluid Science, 2009, 33, 495-502.	1.5	33
44	Design and Testing of a Travelling-Wave Looped-Tube Engine for Low-Cost Electricity Generators in Remote and Rural Areas. , 2009, , .		6
45	PIV studies of coherent structures generated at the end of a stack of parallel plates in a standing wave acoustic field. Experiments in Fluids, 2008, 45, 833-846.	1.1	28
46	Experimental investigation on a thermoacoustic engine having a looped tube and resonator. Cryogenics, 2005, 45, 566-571.	0.9	37
47	Investigation on the oscillation modes in a thermoacoustic Stirling prime mover: mode stability and mode transition. Cryogenics, 2003, 43, 687-691.	0.9	27