Alain Manceau

List of Publications by Citations

Source: https://exaly.com/author-pdf/7585895/alain-manceau-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,508 80 84 46 h-index g-index citations papers 88 7,179 5.7 5.77 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
84	Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite; I, Results from X-ray diffraction and selected-area electron diffraction. <i>American Mineralogist</i> , 1997 , 82, 946-961	2.9	287
83	Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate. <i>Environmental Science & Environmental Scien</i>	10.3	254
82	Structural model for the biogenic Mn oxide produced by Pseudomonas putida. <i>American Mineralogist</i> , 2006 , 91, 489-502	2.9	244
81	Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences. <i>Journal of Synchrotron Radiation</i> , 2004 , 11, 239-47	2.4	221
80	Structure of heavy metal sorbed birnessite. Part III: Results from powder and polarized extended X-ray absorption fine structure spectroscopy. <i>Geochimica Et Cosmochimica Acta</i> , 2002 , 66, 2639-2663	5.5	219
79	Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 984-1008	5.5	207
78	Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite; II, Results from chemical studies and EXAFS spectroscopy. <i>American Mineralogist</i> , 1997 , 82, 962-978	2.9	202
77	Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. <i>American Mineralogist</i> , 2012 , 97, 816-827	2.9	200
76	Formation of metallic copper nanoparticles at the soil-root interface. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 1766-72	10.3	194
75	Structure and Stability of Cd2+ Surface Complexes on Ferric Oxides. <i>Journal of Colloid and Interface Science</i> , 1994 , 168, 73-86	9.3	194
74	Structural mechanism of Co (super 2+) oxidation by the phyllomanganate buserite. <i>American Mineralogist</i> , 1997 , 82, 1150-1175	2.9	189
73	Natural speciation of Ni, Zn, Ba, and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 95-128	5.5	174
72	Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. <i>Environmental Science & Environmental Science & EDTA.</i>	10.3	164
71	Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. <i>Geochimica Et Cosmochimica Acta</i> , 2006 , 70, 27-43	5.5	155
70	Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. <i>American Mineralogist</i> , 2000 , 85, 826-838	2.9	154
69	Structure of Synthetic K-rich Birnessite Obtained by High-Temperature Decomposition of KMnO4. I. Two-Layer Polytype from 800 LC Experiment. <i>Chemistry of Materials</i> , 2003 , 15, 4666-4678	9.6	146
68	Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi Basin. <i>Environmental Science & Environmental Science & Environment</i>	10.3	144

(2002-2004)

67	Natural speciation of Zn at the micrometer scale in a clayey soil using X-ray fluorescence, absorption, and diffraction. <i>Geochimica Et Cosmochimica Acta</i> , 2004 , 68, 2467-2483	5.5	142
66	The nature of Cu bonding to natural organic matter. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 2556-2	1589	140
65	Quantitative Zn speciation in a contaminated dredged sediment by EPIXE, ESXRF, EXAFS spectroscopy and principal component analysis. <i>Geochimica Et Cosmochimica Acta</i> , 2002 , 66, 1549-1567	5.5	137
64	Structure and mechanisms of formation of iron oxide hydroxide (chloride) polymers. <i>Langmuir</i> , 1994 , 10, 316-319	4	130
63	Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule. <i>Geochimica Et Cosmochimica Acta</i> , 2004 , 68, 3125-3136	5.5	128
62	Structure of synthetic Na-birnessite: Evidence for a triclinic one-layer unit cell. <i>American Mineralogist</i> , 2002 , 87, 1662-1671	2.9	124
61	Formation of todorokite from vernadite in Ni-rich hemipelagic sediments. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 5698-5716	5.5	120
60	Structure of nanocrystalline phyllomanganates produced by freshwater fungi. <i>American Mineralogist</i> , 2010 , 95, 1608-1616	2.9	118
59	Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 99, 206-223	5.5	110
58	Zinc sorption by a bacterial biofilm. <i>Environmental Science & Environmental S</i>	10.3	99
57	Zinc distribution and speciation in Arabidopsis halleri x Arabidopsis lyrata progenies presenting various zinc accumulation capacities. <i>New Phytologist</i> , 2009 , 184, 581-595	9.8	97
56	7. Quantitative Speciation of Heavy Metals in Soils and Sediments by Synchrotron X-ray Techniques 2002 , 341-428		96
55	Structure of heavy-metal sorbed birnessite: Part 1. Results from X-ray diffraction. <i>American Mineralogist</i> , 2002 , 87, 1631-1645	2.9	94
54	Zn sorption modifies dynamically the layer and interlayer structure of vernadite. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 85, 302-313	5.5	93
53	Natural speciation of Mn, Ni, and Zn at the micrometer scale in a clayey paddy soil using X-ray fluorescence, absorption, and diffraction. <i>Geochimica Et Cosmochimica Acta</i> , 2005 , 69, 4007-4034	5.5	91
52	Formation of Mercury Sulfide from Hg(II)-Thiolate Complexes in Natural Organic Matter. <i>Environmental Science & Environmental </i>	10.3	85
51	Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques. <i>Geochimica Et Cosmochimica Acta</i> , 2005 , 69, 1173-1198	5.5	84
50	Deciphering Ni sequestration in soil ferromanganese nodules by combining X-ray fluorescence, absorption, and diffraction at micrometer scales of resolution. <i>American Mineralogist</i> , 2002 , 87, 1494-14	1 3 9	78

49	Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule. <i>American Mineralogist</i> , 2014 , 99, 2068-2083	2.9	74
48	Formation of Zn¶a phyllomanganate nanoparticles in grass roots. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 2478-2490	5.5	67
47	Relationships between Hg(II)-S bond distance and Hg(II) coordination in thiolates. <i>Dalton Transactions</i> , 2008 , 1421-5	4.3	64
46	Ba and Ni speciation in a nodule of binary Mn oxide phase composition from Lake Baikal. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 1967-1981	5.5	63
45	Structure of the synthetic K-rich phyllomanganate birnessite obtained by high-temperature decomposition of KMnO4: Substructures of K-rich birnessite from 1000 LC experiment. <i>Microporous and Mesoporous Materials</i> , 2007 , 98, 267-282	5.3	58
44	Biogenesis of Mercury-Sulfur Nanoparticles in Plant Leaves from Atmospheric Gaseous Mercury. <i>Environmental Science & Environmental Science & Environm</i>	10.3	57
43	Short-range and long-range order of phyllomanganate nanoparticles determined using high-energy X-ray scattering. <i>Journal of Applied Crystallography</i> , 2013 , 46, 193-209	3.8	57
42	Metallothionein-like multinuclear clusters of mercury(II) and sulfur in peat. <i>Environmental Science</i> & amp; Technology, 2011 , 45, 7298-306	10.3	54
41	Structure and Mechanisms of Formation of FeOOH(NO3) Oligomers in the Early Stages of Hydrolysis. <i>Langmuir</i> , 1997 , 13, 3240-3246	4	53
40	High energy-resolution x-ray spectroscopy at ultra-high dilution with spherically bent crystal analyzers of 0.5 m radius. <i>Review of Scientific Instruments</i> , 2017 , 88, 013108	1.7	49
39	Chemical Forms of Mercury in Human Hair Reveal Sources of Exposure. <i>Environmental Science & Environmental & Environme</i>	10.3	48
38	Reaction Rates and Products of Manganese Oxidation at the Sediment-Water Interface. <i>Advances in Chemistry Series</i> , 1995 , 111-134		46
37	Structure, Bonding, and Stability of Mercury Complexes with Thiolate and Thioether Ligands from High-Resolution XANES Spectroscopy and First-Principles Calculations. <i>Inorganic Chemistry</i> , 2015 , 54, 11776-91	5.1	40
36	Structure of heavy-metal sorbed birnessite: Part 2. Results from electron diffraction. <i>American Mineralogist</i> , 2002 , 87, 1646-1661	2.9	38
35	Removal of Selenocyanate in Water by Precipitation: Characterization of CopperBelenium Precipitate by X-ray Diffraction, Infrared, and X-ray Absorption Spectroscopy. <i>Environmental Science & Environmental Science</i>	10.3	34
34	Estimating the number of pure chemical components in a mixture by X-ray absorption spectroscopy. <i>Journal of Synchrotron Radiation</i> , 2014 , 21, 1140-7	2.4	31
33	In Vivo Formation of HgSe Nanoparticles and Hg-Tetraselenolate Complex from Methylmercury in Seabirds-Implications for the Hg-Se Antagonism. <i>Environmental Science & Environmental Science & Environm</i>	51 5 -132	6 ³⁰
32	Demethylation of Methylmercury in Bird, Fish, and Earthworm. <i>Environmental Science & Eamp;</i> Technology, 2021 , 55, 1527-1534	10.3	28

(2019-2018)

31	Chemical Forms of Mercury in Pyrite: Implications for Predicting Mercury Releases in Acid Mine Drainage Settings. <i>Environmental Science & Environmental Science & Environment</i>	10.3	27	
30	Divalent Mercury in Dissolved Organic Matter Is Bioavailable to Fish and Accumulates as Dithiolate and Tetrathiolate Complexes. <i>Environmental Science & Environmental Science</i>	10.3	24	
29	PDF analysis of ferrihydrite: Critical assessment of the under-constrained akdalaite model. <i>American Mineralogist</i> , 2014 , 99, 102-108	2.9	23	
28	Mercury-Sequestering Pseudopeptides with a Tris(cysteine) Environment in Water. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 3835-3843	2.3	22	
27	Analysis of the Major Fe Bearing Mineral Phases in Recent Lake Sediments by EXAFS Spectroscopy. Aquatic Geochemistry, 2003 , 9, 1-17	1.7	19	
26	Mercury(II) Binding to Metallothionein in Mytilus edulis revealed by High Energy-Resolution XANES Spectroscopy. <i>Chemistry - A European Journal</i> , 2019 , 25, 997-1009	4.8	18	
25	Revealing the Chemical Form of Invisible Gold in Natural Arsenian Pyrite and Arsenopyrite with High Energy-Resolution X-ray Absorption Spectroscopy. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 1905-19	9312	17	
24	Incorporation of Ge in ferrihydrite: Implications for the structure of ferrihydrite. <i>American Mineralogist</i> , 2013 , 98, 848-858	2.9	16	
23	High-level ab initio calculation of the stability of mercuryEhiolate complexes. <i>Theoretical Chemistry Accounts</i> , 2014 , 133, 1	1.9	13	
22	Nucleation of mercury sulfide by dealkylation. <i>Scientific Reports</i> , 2016 , 6, 39359	4.9	13	
21	TEXS: in-vacuum tender X-ray emission spectrometer with 11 Johansson crystal analyzers. <i>Journal of Synchrotron Radiation</i> , 2020 , 27, 813-826	2.4	12	
20	Comment on Molecular controls on Cu and Zn isotopic fractionation in FeMn crusts by Little et al Earth and Planetary Science Letters, 2015, 411, 310-312	5.3	9	
19	Mercury Trithiolate Binding (HgS) to a de Novo Designed Cyclic Decapeptide with Three Preoriented Cysteine Side Chains. <i>Inorganic Chemistry</i> , 2018 , 57, 2705-2713	5.1	9	
18	Nanometer-sized, divalent-Mn, hydrous silicate domains in geothermal brine precipitates. <i>American Mineralogist</i> , 2005 , 90, 371-381	2.9	9	
17	Isotope Fractionation from In Vivo Methylmercury Detoxification in Waterbirds. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 990-997	3.2	8	
16	Chemical Forms of Mercury in Blue Marlin Billfish: Implications for Human Exposure. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 405-411	11	7	
15	The Mode of Incorporation of As(-I) and Se(-I) in Natural Pyrite Revisited. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 379-390	3.2	6	
14	Comment on R oles of Hydration and Magnetism on the Structure of Ferrihydrite from First Principles[]ACS Earth and Space Chemistry, 2019 , 3, 1576-1580	3.2	6	

13	Critical evaluation of the revised akdalaite model for ferrihydriteReply. <i>American Mineralogist</i> , 2012 , 97, 255-256	2.9	6
12	Cellular remains in a \sim 3.42-billion-year-old subseafloor hydrothermal environment. <i>Science Advances</i> , 2021 , 7,	14.3	6
11	Acute Toxicity of Divalent Mercury to Bacteria Explained by the Formation of Dicysteinate and Tetracysteinate Complexes Bound to Proteins in and. <i>Environmental Science & Environmental Science & Env</i>	10.3	5
10	Mercury Isotope Fractionation by Internal Demethylation and Biomineralization Reactions in Seabirds: Implications for Environmental Mercury Science. <i>Environmental Science & Environmental Science & </i>	10.3	5
9	Evidence for syngenetic micro-inclusions of As3+- and As5+-containing Cu sulfides in hydrothermal pyrite. <i>American Mineralogist</i> , 2019 , 104, 300-306	2.9	4
8	The chemical species of mercury accumulated by Pseudomonas idrijaensis, a bacterium from a rock of the Idrija mercury mine, Slovenia. <i>Chemosphere</i> , 2020 , 248, 126002	8.4	4
7	Chemical Forms of Mercury in Pilot Whales Determined from Species-Averaged Mercury Isotope Signatures. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 1591-1599	3.2	4
6	Thiols in Natural Organic Matter: Molecular Forms, Acidity, and Reactivity with Mercury(II) from First-Principles Calculations and High Energy-Resolution X-ray Absorption Near-Edge Structure Spectroscopy. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 2795-2807	3.2	4
5	Comment on Crystal growth and aggregation in suspensions of EMnO2 nanoparticles: implications for surface reactivity by F. F. Marafatto, B. Lanson and J. Pea, Environ. Sci.: Nano, 2018, 5, 497. <i>Environmental Science: Nano</i> , 2018, 5, 2198-2200	7.1	2
4	Mercury in the tissues of five cephalopods species: First data on the nervous system. <i>Science of the Total Environment</i> , 2021 , 759, 143907	10.2	2
3	Nature of High- and Low-Affinity Metal Surface Sites on Birnessite Nanosheets. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 66-76	3.2	1
2	Chemical Information in the L X-ray Absorption Spectra of Molybdenum Compounds by High-Energy-Resolution Detection and Density Functional Theory <i>Inorganic Chemistry</i> , 2021 ,	5.1	1
1	Comment on "New insights into the biomineralization of mercury selenide nanoparticles through stable isotope analysis in giant petrel tissues" <i>Journal of Hazardous Materials</i> , 2022 , 431, 128583	12.8	0