Zhimin He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7584078/publications.pdf

Version: 2024-02-01

114418 66315 5,814 209 42 63 citations h-index g-index papers 214 214 214 7458 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter, 2011, 7, 6222.	1.2	170
2	Rational Design of Chiral Nanostructures from Self-Assembly of a Ferrocene-Modified Dipeptide. Journal of the American Chemical Society, 2015, 137, 7869-7880.	6.6	170
3	Constructing Redox-Responsive Metal–Organic Framework Nanocarriers for Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 16698-16706.	4.0	147
4	A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays. Biosensors and Bioelectronics, 2015, 74, 454-460.	5.3	133
5	Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability. Food Chemistry, 2016, 192, 178-187.	4.2	123
6	Bioconversion of Lignocellulose into Bioethanol: Process Intensification and Mechanism Research. Bioenergy Research, 2011, 4, 225-245.	2.2	117
7	A facile strategy for enzyme immobilization with highly stable hierarchically porous metal–organic frameworks. Nanoscale, 2017, 9, 17561-17570.	2.8	117
8	Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. Science of the Total Environment, 2021, 766, 144469.	3.9	114
9	A carbon dot-based "off–on―fluorescent probe for highly selective and sensitive detection of phytic acid. Biosensors and Bioelectronics, 2015, 70, 232-238.	5.3	107
10	Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22448-22457.	4.0	101
11	Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. Journal of Materials Science, 2014, 49, 1639-1647.	1.7	100
12	Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomaterialia, 2016, 40, 100-118.	4.1	98
13	Solvent and surface controlled self-assembly of diphenylalanine peptide: from microtubes to nanofibers. Soft Matter, 2011, 7, 6418.	1.2	90
14	Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie - International Edition, 2019, 58, 1308-1314.	7.2	81
15	Selective Synthesis of 2,5-Diformylfuran and 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural and Fructose Catalyzed by Magnetically Separable Catalysts. Energy & Separable Cataly	2.5	80
16	High-performance ultrafiltration membranes based on polyethersulfone–graphene oxide composites. RSC Advances, 2013, 3, 21394.	1.7	79
17	Optimization and Application of Reflective LSPR Optical Fiber Biosensors Based on Silver Nanoparticles. Sensors, 2015, 15, 12205-12217.	2.1	77
18	Enhancing the Activity of Peptide-Based Artificial Hydrolase with Catalytic Ser/His/Asp Triad and Molecular Imprinting. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14133-14141.	4.0	76

#	Article	IF	CITATIONS
19	Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohydrate Polymers, 2021, 272, 118471.	5.1	76
20	Synthesis of silver nanoparticles within cross-linked lysozyme crystals as recyclable catalysts for 4-nitrophenol reduction. Catalysis Science and Technology, 2013, 3, 1910.	2.1	71
21	Interfacial Polymerization of Dopamine in a Pickering Emulsion: Synthesis of Cross-Linkable Colloidosomes and Enzyme Immobilization at Oil/Water Interfaces. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14954-14964.	4.0	69
22	Conjugation of Hyaluronic Acid onto Surfaces via the Interfacial Polymerization of Dopamine to Prevent Protein Adsorption. Langmuir, 2015, 31, 12061-12070.	1.6	66
23	Promising Techniques for Depolymerization of Lignin into Valueâ€added Chemicals. ChemCatChem, 2019, 11, 639-654.	1.8	65
24	An effective in-situ method for laccase immobilization: Excellent activity, effective antibiotic removal rate and low potential ecological risk for degradation products. Bioresource Technology, 2020, 308, 123271.	4.8	65
25	Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires. Nanoscale Research Letters, 2014, 9, 653.	3.1	62
26	Preparation of \hat{l}^2 -mannanase CLEAs using macromolecular cross-linkers. Catalysis Science and Technology, 2013, 3, 1937.	2.1	59
27	A supramolecular approach to construct a hydrolase mimic with photo-switchable catalytic activity. Journal of Materials Chemistry B, 2018, 6, 2444-2449.	2.9	58
28	Threeâ€dimensionally printed bioinspired superhydrophobic PLA membrane for oilâ€water separation. AICHE Journal, 2018, 64, 3700-3708.	1.8	57
29	Utilization of biodiesel by-product as substrate for high-production of \hat{l}^2 -farnesene via relatively balanced mevalonate pathway in Escherichia coli. Bioresource Technology, 2017, 243, 228-236.	4.8	54
30	Amphiphilic hydrogels for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 2899-2910.	2.9	54
31	Polydopamine-Assisted Surface Coating of MIL-53 and Dodecanethiol on a Melamine Sponge for Oil–Water Separation. Langmuir, 2020, 36, 1212-1220.	1.6	54
32	Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants. Catalysis Science and Technology, 2021, 11, 3402-3410.	2.1	54
33	Construction of biomimetic nanozyme with high laccase- and catecholase-like activity for oxidation and detection of phenolic compounds. Journal of Hazardous Materials, 2022, 429, 128404.	6.5	54
34	Aromatic Motifs Dictate Nanohelix Handedness of Tripeptides. ACS Nano, 2018, 12, 12305-12314.	7.3	53
35	3D Flower-like Micro/Nano Ce–Mo Composite Oxides as Effective Bifunctional Catalysts for One-Pot Conversion of Fructose to 2,5-Diformylfuran. ACS Sustainable Chemistry and Engineering, 2017, 5, 4179-4187.	3.2	52
36	Highly Efficient Catalysis of Azo Dyes Using Recyclable Silver Nanoparticles Immobilized on Tannic Acid-Grafted Eggshell Membrane. Nanoscale Research Letters, 2016, 11, 440.	3.1	50

#	Article	IF	Citations
37	Highly efficient and selective production of FFCA from CotA-TJ102 laccase-catalyzed oxidation of 5-HMF. International Journal of Biological Macromolecules, 2019, 128, 132-139.	3.6	50
38	CoMFA and CoMSIA analysis of ACE-inhibitory, antimicrobial and bitter-tasting peptides. European Journal of Medicinal Chemistry, 2014, 84, 100-106.	2.6	49
39	Effect of Formic Acid on Conversion of Fructose to 5-Hydroxymethylfurfural in Aqueous/Butanol Media. Bioenergy Research, 2012, 5, 380-386.	2.2	46
40	Kinetically controlled self-assembly of redox-active ferrocene–diphenylalanine: from nanospheres to nanofibers. Nanotechnology, 2013, 24, 465603.	1.3	46
41	Purification and characterization of \hat{l}^2 -mannanase from Bacillus licheniformis for industrial use. Biotechnology Letters, 2000, 22, 1375-1378.	1.1	42
42	Oriented Enzyme Immobilization at the Oil/Water Interface Enhances Catalytic Activity and Recyclability in a Pickering Emulsion. Langmuir, 2017, 33, 12317-12325.	1.6	42
43	Controlled adsorption of cellulase onto pretreated corncob by pH adjustment. Cellulose, 2012, 19, 371-380.	2.4	41
44	A casein-polysaccharide hybrid hydrogel cross-linked by transglutaminase for drug delivery. Journal of Materials Science, 2012, 47, 2045-2055.	1.7	41
45	Rationally Designed Peptidyl Virusâ€Like Particles Enable Targeted Delivery of Genetic Cargo. Angewandte Chemie - International Edition, 2018, 57, 14032-14036.	7.2	41
46	Self-Assembly of Peptide Hierarchical Helical Arrays with Sequence-Encoded Circularly Polarized Luminescence. Nano Letters, 2021, 21, 6406-6415.	4.5	41
47	Reconfigurable Chiral Selfâ€Assembly of Peptides through Control of Terminal Charges. Small, 2017, 13, 1700999.	5.2	37
48	Columnar Liquid Crystals Self-Assembled by Minimalistic Peptides for Chiral Sensing and Synthesis of Ordered Mesoporous Silica. Chemistry of Materials, 2018, 30, 7902-7911.	3.2	37
49	Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine. Frontiers of Chemical Science and Engineering, 2021, 15, 310-318.	2.3	37
50	Highly selective reductive catalytic fractionation at atmospheric pressure without hydrogen. Green Chemistry, 2021, 23, 1648-1657.	4.6	37
51	Laccase-catalyzed soy protein and gallic acid complexation: Effects on conformational structures and antioxidant activity. Food Chemistry, 2022, 375, 131865.	4.2	37
52	Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale Research Letters, 2014, 9, 404.	3.1	36
53	Calcium-Ion-Triggered Co-assembly of Peptide and Polysaccharide into a Hybrid Hydrogel for Drug Delivery. Nanoscale Research Letters, 2016, 11, 184.	3.1	35
54	Molecularly Imprinted Core-Shell CdSe@SiO2/CDs as a Ratiometric Fluorescent Probe for 4-Nitrophenol Sensing. Nanoscale Research Letters, 2018, 13, 27.	3.1	35

#	Article	IF	Citations
55	Construction of luffa sponge-based magnetic carbon nanocarriers for laccase immobilization and its application in the removal of bisphenol A. Bioresource Technology, 2020, 305, 123085.	4.8	35
56	Synergy between Zwitterionic Polymers and Hyaluronic Acid Enhances Antifouling Performance. Langmuir, 2019, 35, 15535-15542.	1.6	34
57	Sandwich-Like Sensor for the Highly Specific and Reproducible Detection of Rhodamine 6G on a Surface-Enhanced Raman Scattering Platform. ACS Applied Materials & Therfaces, 2020, 12, 4699-4706.	4.0	34
58	Controllable synthesis of a sponge-like Z-scheme N,S-CQDs/Bi2MoO6@TiO2 film with enhanced photocatalytic and antimicrobial activity under visible/NIR light irradiation. Journal of Hazardous Materials, 2022, 429, 128310.	6.5	34
59	Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating. Journal of Materials Chemistry C, 2016, 4, 7554-7562.	2.7	33
60	Green fluorescent protein inspired fluorophores. Advances in Colloid and Interface Science, 2020, 285, 102286.	7.0	33
61	Microfluidic Synthesis of Lignin/Chitosan Nanoparticles for the pH-Responsive Delivery of Anticancer Drugs. Langmuir, 2021, 37, 7219-7226.	1.6	33
62	Gold Nanoparticle-Aptamer-Based LSPR Sensing of Ochratoxin A at a Widened Detection Range by Double Calibration Curve Method. Frontiers in Chemistry, 2018, 6, 94.	1.8	32
63	Bioinspired Phosphatase-like Mimic Built from the Self-Assembly of De Novo Designed Helical Short Peptides. ACS Catalysis, 2021, 11, 5839-5849.	5 . 5	32
64	Green Synthesis of a Gold Nanoparticle–Nanocluster Composite Nanostructures Using Trypsin as Linking and Reducing Agents. ACS Sustainable Chemistry and Engineering, 2013, 1, 1398-1404.	3.2	31
65	Capillary Forceâ€Driven, Hierarchical Coâ€Assembly of Dandelionâ€Like Peptide Microstructures. Small, 2015, 11, 2893-2902.	5.2	31
66	Cascade catalysis via dehydration and oxidation: one-pot synthesis of 2,5-diformylfuran from fructose using acid and V ₂ O ₅ /ceramic catalysts. RSC Advances, 2017, 7, 7560-7566.	1.7	31
67	Enzymatic hydrolysis of protein: Mechanism and kinetic model. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 308-314.	0.4	30
68	Tunable Design of Structural Colors Produced by Pseudoâ€1D Photonic Crystals of Graphene Oxide. Small, 2016, 12, 3433-3443.	5.2	30
69	Design of elution strategy for simultaneous detection of chloramphenicol and gentamicin in complex samples using surface plasmon resonance. Biosensors and Bioelectronics, 2017, 92, 266-272.	5.3	30
70	High-efficiency and low-cost production of cadaverine from a permeabilized-cell bioconversion by a Lysine-induced engineered Escherichia coli. Bioresource Technology, 2020, 302, 122844.	4.8	29
71	Prediction of the secondary structure content of globular proteins based on structural classes. The Protein Journal, 1996, 15, 775-786.	1.1	28
72	Title is missing!. Biotechnology Letters, 1999, 13, 781-786.	0.5	26

#	Article	IF	CITATIONS
73	Prediction of the secondary structure contents of globular proteins based on three structural classes. The Protein Journal, 1998, 17, 261-272.	1.1	25
74	Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin. PLoS ONE, 2015, 10, e0118274.	1,1	25
75	Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie, 2019, 131, 1322-1328.	1.6	25
76	Construction of a Mercapto-Functionalized Zr-MOF/Melamine Sponge Composite for the Efficient Removal of Oils and Heavy Metal Ions from Water. Industrial & Engineering Chemistry Research, 2020, 59, 13220-13227.	1.8	25
77	Purification, characterization, and production of \hat{l}^2 -mannanase from Bacillus subtilis TJ-102 and its application in gluco-mannooligosaccharides preparation. European Food Research and Technology, 2013, 237, 399-408.	1.6	24
78	Bioorganometallic ferrocene-tripeptide nanoemulsions. Nanoscale, 2017, 9, 15323-15331.	2.8	24
79	Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction. Nanoscale Research Letters, 2015, 10, 213.	3.1	23
80	Self-Assembled Microporous Peptide-Polysaccharide Aerogels for Oil–Water Separation. Langmuir, 2018, 34, 10732-10738.	1.6	23
81	Molecularly imprinted peptide-based enzyme mimics with enhanced activity and specificity. Soft Matter, 2020, 16, 7033-7039.	1.2	23
82	Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor. Bioenergy Research, 2011, 4, 134-140.	2.2	22
83	Enzymatic hydrolysis of lignocellulose: SEC-MALLS analysis and reaction mechanism. RSC Advances, 2013, 3, 1871-1877.	1.7	22
84	A kinetic correlation for konjac powder hydrolysis by \hat{l}^2 -mannanase from Bacillus licheniformis. Biotechnology Letters, 2001, 23, 389-393.	1.1	21
85	Sensitive and Efficient Electrochemical Determination of Kojic Acid in Foodstuffs Based on Graphene-Pt Nanocomposite-Modified Electrode. Food Analytical Methods, 2014, 7, 109-115.	1.3	21
86	Recyclable Strategy for the Production of High-Purity Galacto-oligosaccharides by <i>Kluyveromyces lactis</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 5679-5685.	2.4	21
87	Exploration of Intrinsic Lipase-Like Activity of Zirconium-Based Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2018, 2018, 4579-4585.	1.0	20
88	Role of molecular chirality and solvents in directing the self-assembly of peptide into an ultra-pH-sensitive hydrogel. Journal of Colloid and Interface Science, 2020, 577, 388-396.	5.0	20
89	Synergistic effect of polystyrene nanoplastics and contaminants on the promotion of insulin fibrillation. Ecotoxicology and Environmental Safety, 2021, 214, 112115.	2.9	20
90	Study of the Interaction Between Coenzyme Q10 and Human Serum Albumin: Spectroscopic Approach. Journal of Solution Chemistry, 2014, 43, 585-607.	0.6	19

#	Article	IF	CITATIONS
91	Jet flow directed supramolecular self-assembly at aqueous liquid–liquid interface. RSC Advances, 2014, 4, 15340.	1.7	19
92	Utilization of whey powder as substrate for low-cost preparation of \hat{l}^2 -galactosidase as main product, and ethanol as by-product, by a litre-scale integrated process. Bioresource Technology, 2017, 245, 1271-1276.	4.8	19
93	Bioinspired pH-Sensitive Fluorescent Peptidyl Nanoparticles for Cell Imaging. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 4212-4220.	4.0	19
94	Ethanol Production from High-Solid SSCF of Alkaline-Pretreated Corncob Using Recombinant Zymomonas mobilis CP4. Bioenergy Research, 2013, 6, 292-299.	2.2	18
95	Facile method to synthesize graphene-ZnS nanocomposites: preparation and application in bioelectrochemistry of hemoglobin. Journal of Solid State Electrochemistry, 2013, 17, 2595-2602.	1.2	18
96	Changes in the supramolecular structures of cellulose after hydrolysis studied by terahertz spectroscopy and other methods. RSC Advances, 2014, 4, 57945-57952.	1.7	18
97	Real-time adsorption and action of expansin on cellulose. Biotechnology for Biofuels, 2018, 11, 317.	6.2	18
98	Production enhancement of 5â€hydroxymethyl furfural from fructose via mechanical stirring control and highâ€fructose solution addition. Journal of Chemical Technology and Biotechnology, 2014, 89, 56-64.	1.6	17
99	Peptideâ€Templated Synthesis of TiO ₂ Nanofibers with Tunable Photocatalytic Activity. Chemistry - A European Journal, 2018, 24, 18123-18129.	1.7	17
100	Photoâ€Induced Polymerization and Reconfigurable Assembly of Multifunctional Ferroceneâ€Tyrosine. Small, 2018, 14, e1800772.	5.2	17
101	Disulfide crosslinking and helical coiling of peptide micelles facilitate the formation of a printable hydrogel. Journal of Materials Chemistry B, 2019, 7, 2981-2988.	2.9	17
102	Circularly Polarized Luminescent Chiral Photonic Films Based on the Coassembly of Cellulose Nanocrystals and Gold Nanoclusters. Langmuir, 2022, 38, 4147-4155.	1.6	17
103	Enhanced enzymatic hydrolysis of lignocellulose by integrated decrystallization and fed-batch operation. RSC Advances, 2014, 4, 44659-44665.	1.7	16
104	Magnetic–fluorescent nanocomposites as reusable fluorescence probes for sensitive detection of hydrogen peroxide and glucose. Analytical Methods, 2014, 6, 6352-6357.	1.3	16
105	Superior Catalytic Performance of Gold Nanoparticles Within Small Cross-Linked Lysozyme Crystals. Langmuir, 2016, 32, 10895-10904.	1.6	16
106	Enhanced enzymatic hydrolysis of corncob by ultrasound-assisted soaking in aqueous ammonia pretreatment. 3 Biotech, 2018, 8, 166.	1.1	16
107	Self-assembly of multifunctional hydrogels with polyoxometalates helical arrays using nematic peptide liquid crystal template. Journal of Colloid and Interface Science, 2020, 578, 218-228.	5.0	16
108	Zwitterionic Peptide Enhances Protein-Resistant Performance of Hyaluronic Acid-Modified Surfaces. Langmuir, 2020, 36, 1923-1929.	1.6	16

#	Article	IF	CITATIONS
109	Co-assembly of curcumin and a cystine bridged peptide to construct tumor-responsive nano-micelles for efficient chemotherapy. Journal of Materials Chemistry B, 2020, 8, 1944-1951.	2.9	16
110	Scissor-based fluorescent detection of pepsin using lysozyme-stabilized Au nanoclusters. Analytical Methods, 2014, 6, 6789-6795.	1.3	15
111	Development of a novel integrated process for co-production of \hat{l}^2 -galactosidase and ethanol using lactose as substrate. Bioresource Technology, 2017, 230, 15-23.	4.8	15
112	Effects of macromolecular crowding on alkaline phosphatase unfolding, conformation and stability. International Journal of Biological Macromolecules, 2017, 101, 373-382.	3. 6	15
113	Constructing peptide-based artificial hydrolases with customized selectivity. Journal of Materials Chemistry B, 2019, 7, 3804-3810.	2.9	15
114	Photo- and Aromatic Stacking-Induced Green Emissive Peptidyl Nanoparticles for Cell Imaging and Monitoring of Nucleic Acid Delivery. ACS Applied Materials & Emp; Interfaces, 2019, 11, 15401-15410.	4.0	15
115	Investigation of fermentation conditions of biodiesel by-products for high production of \hat{l}^2 -farnesene by an engineered Escherichia coli. Environmental Science and Pollution Research, 2020, 27, 22758-22769.	2.7	15
116	A tumor-sensitive biological metal–organic complex for drug delivery and cancer therapy. Journal of Materials Chemistry B, 2020, 8, 7189-7196.	2.9	15
117	Self-Templated, Enantioselective Assembly of an Amyloid-like Dipeptide into Multifunctional Hierarchical Helical Arrays. ACS Nano, 2021, 15, 9827-9840.	7.3	15
118	High chloroform removal using tannic acid to promote the activation of persulfate with Fe/Ni nanoparticles. Environmental Chemistry Letters, 2021, 19, 4015-4020.	8.3	15
119	Lubricin-Inspired Loop Zwitterionic Peptide for Fabrication of Superior Antifouling Surfaces. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41978-41986.	4.0	15
120	One-pot production of phenazine from lignin-derived catechol. Green Chemistry, 2022, 24, 1224-1230.	4.6	15
121	Bioinspired Fluorescent Peptidyl Nanoparticles with Rainbow Colors. ACS Applied Materials & Company (1977) among the Interfaces, 2020, 12, 31830-31841.	4.0	14
122	Synergy between endo/exo-glucanases and expansin enhances enzyme adsorption and cellulose conversion. Carbohydrate Polymers, 2021, 253, 117287.	5.1	14
123	Alizarin and Purpurin from <i>Rubia tinctorum</i> L. Suppress Insulin Fibrillation and Reduce the Amyloid-Induced Cytotoxicity. ACS Chemical Neuroscience, 2021, 12, 2182-2193.	1.7	14
124	Chirality-Dependent Copper–Diphenylalanine Assemblies with Tough Layered Structure and Enhanced Catalytic Performance. ACS Nano, 2022, 16, 6866-6877.	7.3	14
125	Structural Insight into Stabilization of Pickering Emulsions with Fe ₃ O ₄ @SiO ₂ Nanoparticles for Enzyme Catalysis in Organic Media. Particle and Particle Systems Characterization, 2017, 34, 1700117.	1.2	13
126	Tandem Biocatalysis by CotA-TJ102@UIO-66-NH2 and Novozym 435 for Highly Selective Transformation of HMF into FDCA. Transactions of Tianjin University, 2019, 25, 488-496.	3.3	13

#	Article	IF	CITATIONS
127	Nontoxic Black Phosphorus Quantum Dots Inhibit Insulin Amyloid Fibrillation at an Ultralow Concentration. IScience, 2020, 23, 101044.	1.9	13
128	An effective and green method for the extraction and purification of aglycone isoflavones from soybean. Food Science and Biotechnology, 2013, 22, 705-712.	1.2	12
129	Tannic acid enhances the removal of chloroform from water using NaOH-activated persulfate. Environmental Chemistry Letters, 2020, 18, 1441-1446.	8.3	12
130	Control of peptide hydrogel formation and stability via heating treatment. Journal of Colloid and Interface Science, 2021, 583, 234-242.	5.0	12
131	Counterionâ€Directed, Structurally Tunable Assembly of Hydrogels, Membranes, and Sacs at Aqueous Liquid–Liquid Interfaces. Advanced Materials Interfaces, 2016, 3, 1500327.	1.9	11
132	Migration of photoinitiators from paper to fatty food simulants: experimental studies and model application. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 876-884.	1.1	11
133	Enhanced cellulase recovery without βâ€glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant. Biotechnology and Bioengineering, 2017, 114, 543-551.	1.7	11
134	Migration of phthalates from polyvinyl chloride film to fatty food simulants: experimental studies and model application. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2020, 15, 135-143.	0.5	11
135	Ferrocene-Modified Metal–Organic Frameworks as a Peroxidase-Mimicking Catalyst. Catalysis Letters, 2021, 151, 478-486.	1.4	11
136	Bifunctional utilization of whey powder as a substrate and inducer for $\hat{1}^2$ -farnesene production in an engineered Escherichia coli. Bioresource Technology, 2021, 341, 125739.	4.8	11
137	AuNP array coated substrate for sensitive and homogeneous SERS-immunoassay detection of human immunoglobulin G. RSC Advances, 2021, 11, 22744-22750.	1.7	11
138	Copper ions binding regulation for the high-efficiency biodegradation of ciprofloxacin and tetracycline-HCl by low-cost permeabilized-cells. Bioresource Technology, 2022, 344, 126297.	4.8	11
139	Solvation energy and thermal stability of hydrophilization-modified alpha-chymotrypsin. The Protein Journal, 1999, 18, 557-564.	1.1	10
140	Comparative QSAR modeling of antitumor activity of ARC-111 analogues using stepwise MLR, PLS, and ANN techniques. Medicinal Chemistry Research, 2010, 19, 1233-1244.	1.1	10
141	Adsorptive removal of Ni(<scp>ii</scp>) ions from aqueous solution and the synthesis of a Ni-doped ceramic: an efficient enzyme carrier exhibiting enhanced activity of immobilized lipase. RSC Advances, 2016, 6, 64581-64588.	1.7	10
142	Co-assembly of Fmoc-tripeptide and gold nanoparticles as a facile approach to immobilize nanocatalysts. RSC Advances, 2017, 7, 15736-15741.	1.7	10
143	Selfâ€Assembly of Ferrocene Peptides: A Nonheme Strategy to Construct a Peroxidase Mimic. Advanced Materials Interfaces, 2019, 6, 1901082.	1.9	10
144	<i>In situ</i> fabrication of multifunctional gold–amino acid superstructures based on self-assembly. Chemical Communications, 2019, 55, 3967-3970.	2.2	10

#	Article	IF	CITATIONS
145	Efficient removal of chloroform in groundwater by polyethylene glycol-stabilized Fe/Ni nanoparticles. Environmental Chemistry Letters, 2021, 19, 3511-3515.	8.3	10
146	Colorful Pigments for Hair Dyeing Based on Enzymatic Oxidation of Tyrosine Derivatives. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34851-34864.	4.0	10
147	Alginate-casein microspheres as bioactive vehicles for nutrients. Transactions of Tianjin University, 2015, 21, 383-391.	3.3	9
148	Reducing \hat{l}^2 -glucosidase supplementation during cellulase recovery using engineered strain for successive lignocellulose bioconversion. Bioresource Technology, 2015, 187, 362-368.	4.8	9
149	Interaction of particles with mucosae and cell membranes. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110657.	2.5	9
150	Fabrication of nanohybrids assisted by protein-based materials for catalytic applications. Catalysis Science and Technology, 2020, 10, 3515-3531.	2.1	9
151	Development of an integrated process for the production of highâ€purity cadaverine from lysine decarboxylase. Journal of Chemical Technology and Biotechnology, 2020, 95, 1542-1549.	1.6	9
152	Konjac glucomannan and xanthan gum as compression coat for colonic drug delivery: experimental and theoretical evaluations. Frontiers of Chemical Engineering in China, 2010, 4, 102-108.	0.6	8
153	Enhanced electrochemical detection performance of multiwall carbon nanotubes functionalized by aspartame. Journal of Materials Science, 2013, 48, 5624-5632.	1.7	8
154	Real-Time QCM-D Monitoring of Deposition of Gold Nanorods on a Supported Lipid Bilayer as a Model Cell Membrane. ACS Omega, 2019, 4, 6059-6067.	1.6	8
155	<i>In situ</i> growth of Au–Ag bimetallic nanorings on optical fibers for enhanced plasmonic sensing. Journal of Materials Chemistry C, 2020, 8, 7552-7560.	2.7	8
156	Effect of Sugars on the Real-Time Adsorption of Expansin on Cellulose. Biomacromolecules, 2020, 21, 1776-1784.	2.6	8
157	Real-Time QCM-D Monitoring of the Adsorption–Desorption of Expansin on Lignin. Langmuir, 2020, 36, 4503-4510.	1.6	8
158	Rational design of $17\hat{l}^2$ -hydroxysteroid dehydrogenase type3 for improving testosterone production with an engineered Pichia pastoris. Bioresource Technology, 2021, 341, 125833.	4.8	8
159	A light-responsive multienzyme complex combining cascade enzymes within a peptide-based matrix. RSC Advances, 2018, 8, 6047-6052.	1.7	7
160	Design of Silica Nanostructures with Tunable Architectures Templated by Ferrocene Peptides. ChemistrySelect, 2018, 3, 4939-4943.	0.7	7
161	Poly (\hat{I}^3 -Glutamic Acid) Promotes Enhanced Dechlorination of p-Chlorophenol by Fe-Pd Nanoparticles. Nanoscale Research Letters, 2018, 13, 219.	3.1	7
162	Self-Assembly of Peptide Chiral Nanostructures with Sequence-Encoded Enantioseparation Capability. Langmuir, 2020, 36, 10361-10370.	1.6	7

#	Article	IF	Citations
163	Enhanced enzymatic hydrolysis of cellulose by endoglucanase via expansin pretreatment and the addition of zinc ions. Bioresource Technology, 2021, 333, 125139.	4.8	7
164	A Low-Cost and Easily Prepared Manganese Carbonate as an Efficient Catalyst for Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran. Transactions of Tianjin University, 2018, 24, 301-307.	3.3	6
165	Rationally Designed Peptidyl Virusâ€Like Particles Enable Targeted Delivery of Genetic Cargo. Angewandte Chemie, 2018, 130, 14228-14232.	1.6	6
166	Facile Fabrication of Oxidized Ligninâ€Based Porous Carbon Spheres for Efficient Removal of Pb ²⁺ . ChemistrySelect, 2019, 4, 5251-5257.	0.7	6
167	Construction of Supramolecular Nanostructures with High Catalytic Activity by Photoinduced Hierarchical Coâ€Assembly. Chemistry - A European Journal, 2019, 25, 7896-7902.	1.7	6
168	Oligomeric procyanidins inhibit insulin fibrillation by forming unstructured and off-pathway aggregates. RSC Advances, 2021, 11, 37290-37298.	1.7	6
169	Flame-resistant bifunctional MOF-based sponges for effective separation of oil/water mixtures and enzyme-like degradation of organic pollutants. Chemical Engineering Research and Design, 2022, 163, 636-644.	2.7	6
170	Operational and storage stability of neutral \hat{l}^2 -mannanase from Bacillus licheniformis. Biotechnology Letters, 2002, 24, 1611-1613.	1.1	5
171	Transformation of antimicrobial into bradykinin-potentiating peptides during peptic hydrolysis of bovine haemoglobin: identification, release kinetics and reaction network of peptides. Journal of the Science of Food and Agriculture, 2007, 87, 461-469.	1.7	5
172	Capillary Flowâ€Driven, Hierarchical Chiral Selfâ€Assembly of Peptide Nanohelix Arrays. Advanced Materials Interfaces, 2017, 4, 1700514.	1.9	5
173	A simply enzymatic hydrolysis pretreatment for \hat{l}^2 -mannanase production from konjac powder. Bioresource Technology, 2018, 249, 1052-1057.	4.8	5
174	Polydopamine-Assisted Fabrication of Stable Silver Nanoparticles on Optical Fiber for Enhanced Plasmonic Sensing. Photonic Sensors, 2020, 10, 97-104.	2.5	5
175	Self-Assembly of Ferrocenyl Phenylalanine into Nanohelical Arrays via Kinetic Control. ACS Applied Bio Materials, 2021, 4, 4744-4752.	2.3	5
176	Rational Design of Chiral Nanohelices from Self-Assembly of Meso-tetrakis (4-Carboxyphenyl) Porphyrin-Amino Acid Conjugates. Langmuir, 2021, 37, 13067-13074.	1.6	5
177	Flow Rate and Concentrationâ€dependent Effects of Molecular Dynamics on Elution Behaviors of Flexible Polymers in Gel Permeation Chromatography: A Multiâ€angle Laser Light Scattering Study. Journal of Macromolecular Science - Physics, 2006, 45, 699-708.	0.4	4
178	Dissolution and enzymatic hydrolysis of casein micelles studied by dynamic light scattering. Frontiers of Chemical Engineering in China, 2007, 1, 123-127.	0.6	4
179	Selfâ€Assembly of Ferroceneâ€Phenylalanine@Graphene Oxide Hybrid Hydrogels for Dopamine Detection. ChemPlusChem, 2020, 85, 2341-2348.	1.3	4
180	Synthesis of heptapeptides and analysis of sequence by tandem ion trap mass spectrometry. Open Chemistry, 2006, 4, 285-298.	1.0	3

#	Article	IF	CITATIONS
181	Enhancing thermostability of \hat{l}^2 -mannanase by protective additives. Frontiers of Chemical Engineering in China, 2008, 2, 439-442.	0.6	3
182	Oscillating Cellulase Adsorption and Enhanced Lignocellulose Hydrolysis upon Ultrasound Treatment. Transactions of Tianjin University, 2017, 23, 11-19.	3.3	3
183	Kinetically Controlled Carboxypeptidase-Catalyzed Synthesis of Novel Antioxidant Dipeptide Precursor BOC-Tyr-Ala. Transactions of Tianjin University, 2018, 24, 513-521.	3.3	3
184	Frontispiz: Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie, 2019, 131, .	1.6	3
185	Thermally Induced Structural Transition of Peptide Nanofibers into Nanoparticles with Enhanced Fluorescence Properties. ChemPlusChem, 2020, 85, 1523-1528.	1.3	3
186	Self-Assembled Bio-Organometallic Nanocatalysts for Highly Enantioselective Direct Aldol Reactions. Langmuir, 2020, 36, 13735-13742.	1.6	3
187	An effective enzymatic assay for pH selectively measuring direct and total bilirubin concentration by using of CotA. Biochemical and Biophysical Research Communications, 2021, 547, 192-197.	1.0	3
188	Topologyâ€Induced Chiral Amplification and Inversion in Selfâ€Assembling Dipeptide Films. Advanced Materials Interfaces, 0, , 2102089.	1.9	3
189	Sequencing peptides by electrospray ion-trap mass spectrometry: A useful tool in synthesis of Axinastatin 3. Open Chemistry, 2006, 4, .	1.0	2
190	Polydopamine-assisted fabrication of fiber-optic localized surface plasmon resonance sensor based on gold nanoparticles. Transactions of Tianjin University, 2015, 21, 412-419.	3.3	2
191	Engineering peptide-based biomimetic enzymes for enhanced catalysis. RSC Advances, 2016, 6, 40828-40834.	1.7	2
192	Response to "Comment on â€Tunable Design of Structural Colors Produced by Pseudoâ€1D Photonic Crystals of Graphene Oxide' and Thinâ€Film Interference from Dried Graphene Oxide Film†Small, 2017, 13, 1700102.	5.2	2
193	High-Efficiency Preparation of 2,5-Diformylfuran with a Keto-ABNO Catalyst Under Mild Conditions. Transactions of Tianjin University, 2019, 25, 118-123.	3.3	2
194	Solid-Phase Enzymatic Peptide Synthesis to Produce an Antioxidant Dipeptide. Transactions of Tianjin University, 2019, 25, 276-282.	3.3	2
195	Promising Techniques for Depolymerization of Lignin into Valueâ€added Chemicals. ChemCatChem, 2019, 11, 638-638.	1.8	2
196	Enhanced Polychromatic Luminescence of Bionic Peptidyl Nanoparticles Driven by Hydrogen Bonds. Particle and Particle Systems Characterization, 0, , 2100260.	1.2	2
197	Development of SERS-based immunoassay for the detection of cryptococcosis biomarker. Analytical and Bioanalytical Chemistry, 2022, 414, 4645-4654.	1.9	2
198	EFFECT OF PHOSPHORYLATION ON THE RETENTION BEHAVIOR OF PEPTIDES IN ION PAIRING REVERSED-PHASE HPLC BASED ON A PREDICTION MODEL. Journal of Liquid Chromatography and Related Technologies, 2010, 33, 733-747.	0.5	1

ZHIMIN HE

#	ARTICLE	IF	CITATIONS
199	Photonic Crystals: Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide (Small 25/2016). Small, 2016, 12, 3432-3432.	5.2	1
200	Peptide Biomaterials: Photo-Induced Polymerization and Reconfigurable Assembly of Multifunctional Ferrocene-Tyrosine (Small 25/2018). Small, 2018, 14, 1870118.	5.2	1
201	Protamineâ€induced condensation of peptide nanofilaments into twisted bundles with controlled helical geometry. Journal of Peptide Science, 2019, 25, e3176.	0.8	1
202	Interactions of Transition Metal Dichalcogenide Nanosheets With Mucin: Quartz Crystal Microbalance With Dissipation, Surface Plasmon Resonance, and Spectroscopic Probing. Frontiers in Chemistry, 2019, 7, 166.	1.8	1
203	Enzyme-free visualization of nucleic acids during HIV infection by octopus-like DNA. International Journal of Biological Macromolecules, 2020, 150, 122-128.	3.6	1
204	An HPSEC Method for Determining the Cleavage Position of a Protein in Enzymatic Hydrolysis. Journal of Liquid Chromatography and Related Technologies, 2003, 26, 1787-1796.	0.5	0
205	Quantitative analysis of complex casein hydrolysates based on chromatography and membrane. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 199-202.	0.4	0
206	Peptide Microstructures: Capillary Forceâ€Driven, Hierarchical Coâ€Assembly of Dandelionâ€Like Peptide Microstructures (Small 24/2015). Small, 2015, 11, 2830-2830.	5.2	0
207	Counterionâ€Directed Assembly: Counterionâ€Directed, Structurally Tunable Assembly of Hydrogels, Membranes, and Sacs at Aqueous Liquid–Liquid Interfaces (Adv. Mater. Interfaces 5/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	0
208	Innentitelbild: Rationally Designed Peptidyl Virus-Like Particles Enable Targeted Delivery of Genetic Cargo (Angew. Chem. 43/2018). Angewandte Chemie, 2018, 130, 14134-14134.	1.6	0
209	Frontispiece: Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie - International Edition, 2019, 58, .	7.2	O