
Masoumeh Abedini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7583772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Succinimide based reagents: Useful catalysts for important organic reactions. Current Organocatalysis, 2022, 09, .	0.5	0
2	Efficient Synthesis of 2 <i>H</i> -Indazolo[2,1- <i>b</i>]Phthalazine-Triones Using [PVPH]ClO ₄ as a Modified Polymeric Catalyst. Polycyclic Aromatic Compounds, 2021, 41, 419-426.	2.6	7
3	Synthesis of chromene derivatives in the presence of mordenite zeolite/MILâ€101 (Cr) metal–organic framework composite as catalyst. Applied Organometallic Chemistry, 2019, 33, e4801.	3.5	15
4	A clean synthesis of bis(indolyl)methane and biscoumarin derivatives using P ₄ VPy–CuO nanoparticles as a new, efficient and heterogeneous polymeric catalyst. RSC Advances, 2016, 6, 48469-48478.	3.6	49
5	P4VPy–CuO nanoparticles as a novel and reusable catalyst: application at the protection of alcohols, phenols and amines. Journal of the Iranian Chemical Society, 2016, 13, 1699-1712.	2.2	3
6	Poly(vinylpyrrolidonium) perchlorate catalyzed one-pot synthesis of tricyclic dihydropyrimidine derivatives. Research on Chemical Intermediates, 2016, 42, 6221-6229.	2.7	27
7	Succinimidinium N-sulfonic acid hydrogen sulfate as an efficient ionic liquid catalyst for the synthesis of 5-arylmethylene-pyrimidine-2,4,6-trione and pyrano[2,3-d]pyrimidinone derivatives. Research on Chemical Intermediates, 2016, 42, 4443-4458.	2.7	15
8	Poly(vinylpyrrolidinium) perchlorate as a new and efficient catalyst for the promotion of the synthesis of polyhydroquinoline derivatives via Hantzsch condensation. Research on Chemical Intermediates, 2016, 42, 2303-2315.	2.7	27
9	Synthesis of benzimidazole and quinoxaline derivatives using reusable sulfonated rice husk ash (RHA-SO3H) as a green and efficient solid acid catalyst. Research on Chemical Intermediates, 2016, 42, 1091-1099.	2.7	37
10	Efficient synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives using succinimidinium N-sulfonic acid hydrogen sulfate as a new ionic liquid catalyst. Journal of Molecular Liquids, 2015, 212, 405-412.	4.9	24
11	Introduction of W-doped ZnO nanocomposite as a new and efficient nanocatalyst for the synthesis of biscoumarins in water. Journal of Nanostructure in Chemistry, 2015, 5, 123-130.	9.1	28
12	Introduction of a new high yielding method for the synthesis of 1, 8-dioxo-octahydroxanthenes using W-doped ZnO nanocomposite. Journal of Nanostructure in Chemistry, 2015, 5, 55-63.	9.1	9
13	Efficient synthesis of 4H-pyran derivatives using a polymeric catalyst based on PVP. Journal of the Iranian Chemical Society, 2015, 12, 2105-2113.	2.2	10
14	Introduction of a New Ionic Liquid Catalyst for the Trimethylsilyl and Tetrahydropyranyl Protection of Alcohols. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1912-1921.	1.6	12
15	One-pot synthesis of 4,4Ê ¹ -(arylmethylene)-bis-(3-methyl-1-phenyl-1H-pyrazol-5-ols) catalyzed by Brönsted acidic ionic liquid supported on nanoporous Na+-montmorillonite. Journal of Molecular Liquids, 2015, 208, 291-297.	4.9	45
16	Preparation, characterization, and application of 1,1′-disulfo-[2,2′-bipyridine]-1,1′-diium chloride ionic liquid as an efficient catalyst for the synthesis of benzimidazole derivatives. Research on Chemical Intermediates, 2015, 41, 7683-7693.	2.7	10
17	N-Sulfonic Acids: New, Efficient and Reusable Catalysts for the Acceleration of Organic Reactions. Current Organic Chemistry, 2015, 19, 2011-2039.	1.6	8
18	Introduction of a new bi-SO3H ionic liquid based on 2,2′-bipyridine as a novel catalyst for the synthesis of various xanthene derivatives. RSC Advances, 2014, 4, 63526-63532.	3.6	37

MASOUMEH ABEDINI

#	Article	IF	CITATIONS
19	Sulfonic acid-functionalized ordered nanoporous Na+-montmorillonite (SANM) as an efficient and recyclable catalyst for the tetrahydropyranylation and detetrahydropyranylation of alcohols and phenols. Journal of Nanostructure in Chemistry, 2014, 4, 1.	9.1	7
20	Iranian chemist's efforts to provide various effective methods for the synthesis of xanthenes. Journal of the Iranian Chemical Society, 2014, 11, 791-824.	2.2	7
21	BiVO4-NPs as a new and efficient nano-catalyst for the synthesis of 1,8-dioxo-octahydro xanthenes. Journal of Nanostructure in Chemistry, 2014, 4, 1.	9.1	2
22	Introduction of titania sulfonic acid (TiO ₂ -SO ₃ H) as a new, efficient, and reusable heterogenous solid acid catalyst for the synthesis of biscoumarins. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 1279-1288.	1.6	22
23	N-Sulfonic acid poly(4-vinylpyridinium) chloride as a highly efficient and reusable catalyst for the Biginelli reaction. Chinese Chemical Letters, 2014, 25, 111-114.	9.0	24
24	Poly(4-vinylpyridinium bromochromate): an efficient reagent for bromination of aromatic compounds. Monatshefte Für Chemie, 2013, 144, 179-181.	1.8	5
25	Copper iodide nanoparticles on poly(4-vinylpyridine): A new and efficient catalyst for the synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions. Journal of Chemical Sciences, 2013, 125, 295-298.	1.5	16
26	N-sulfonic acid poly(4-vinylpyridinium) chloride: A novel polymeric and reusable catalyst for the preparation of xanthenes derivatives. Dyes and Pigments, 2013, 99, 250-255.	3.7	40
27	Copper iodide nanoparticles on poly(4-vinyl pyridine) as new and green catalyst for multicomponent click synthesis of 1,4-disubstituted-1,2,3-triazoles in water. Chinese Chemical Letters, 2012, 23, 797-800.	9.0	31
28	Regioselective iodination of aromatic compounds with potassium iodide in the presence of benzyltriphenylphosphonium perchlorate. Chinese Chemical Letters, 2012, 23, 261-264.	9.0	4
29	Nanocrystalline TiO2 as an efficient and reusable catalyst for the chemoselective trimethylsilylation of primary and secondary alcohols and phenols. Chinese Chemical Letters, 2011, 22, 1211-1211.	9.0	23
30	V(HSO4)3 promoted oxidation of alcohols and trimethylsilyl, tetrahyropyranyl and methoxymethyl ethers with Cu(NO3)2·3H2O in the absence of solvent. Chinese Chemical Letters, 2011, 22, 33-36.	9.0	3
31	Efficient regeneration of aldehydes from their corresponding 1,3-oxathiolanes in the absence of solvent. Chinese Chemical Letters, 2011, 22, 421-423.	9.0	2
32	Efficient synthesis of bis (indolyl) methanes catalyzed by (PhCH2PPh3)+Br3â^' under solvent-free conditions. Chinese Chemical Letters, 2010, 21, 1342-1345.	9.0	22
33	Chemoselective trimethylsilylation of alcohols catalyzed by saccharin sulfonic acid. Monatshefte Für Chemie, 2009, 140, 61-64.	1.8	28
34	Saccharinsulfonic acid: an efficient and recyclable catalyst for acetylation of alcohols, phenols, and amines. Monatshefte Für Chemie, 2009, 140, 1495-1498.	1.8	23
35	V(HSO4)3 catalyzed chemoselectivity acetylation of alcohols and phenols in solution and under solvent-free conditions. Chinese Chemical Letters, 2009, 20, 439-443.	9.0	8
36	KBrO3/MoO3: An efficient reagent system for the oxidative deprotection of semicarbazones, 1,1-diacetates and acetals. Chinese Chemical Letters, 2009, 20, 514-518.	9.0	5

Masoumeh Abedini

#	Article	IF	CITATIONS
37	Silica sulfuric acid: A versatile reagent for oxathioacetalyzation of carbonyl compounds and deprotection of 1,3-oxathiolanes. Chinese Chemical Letters, 2009, 20, 1457-1460.	9.0	21
38	Applications of Some Metal Hydrogen Sulfates in Organic Transformations. Current Organic Chemistry, 2008, 12, 183-202.	1.6	75
39	Vanadium Hydrogen Sulfate (I): Chemoselective Trimethylsilylation of Alcohols and Deprotection of Trimethylsilyl Ethers. Journal of the Chinese Chemical Society, 2008, 55, 943-946.	1.4	7
40	NaHSO4.H2O promoted oxidative deprotection of trimethylsilyl, tetrahydropyranyl and methoxymethyl ethers with HIO3. Arkivoc, 2008, 2008, 71-78.	0.5	3
41	Al(HSO4)3 as an Efficient Reagent for the Selective Trimethylsilylation of Primary Alcohols under Solvent-Free Conditions ChemInform, 2006, 37, no.	0.0	0
42	Silylation and Tetrahydropyranylation of Alcohols Catalyzed by Al(HSO4)3. Bulletin of the Chemical Society of Japan, 2005, 78, 1982-1985.	3.2	38
43	Al(HSO4)3as an Efficient Reagent for the Selective Trimethylsilylation of Primary Alcohols Under Solvent-Free Conditions. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 2299-2302.	1.6	11
44	Al(HSO 4) 3 as an Efficient Catalyst for the Acetylation of Alcohols in Solution and Under Solvent Free Conditions. Monatshefte Für Chemie, 2004, 135, 279-282.	1.8	28
45	Al(HSO4)3 as an Efficient Catalyst for the Acetylation of Alcohols in Solution and Under Solvent Free Conditions ChemInform, 2004, 35, no.	0.0	0
46	Oxidation of alcohols using (NH4)2Cr2O4 in the presence of Al(HSO4)3 and wet SiO2. Mendeleev Communications, 2003, 13, 265-266.	1.6	12