
Elżbieta K Horszczaruk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7583426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocomposite of cement/graphene oxide – Impact on hydration kinetics and Young's modulus. Construction and Building Materials, 2015, 78, 234-242.	3.2	168
2	Abrasion resistance of high-strength concrete in hydraulic structures. Wear, 2005, 259, 62-69.	1.5	105
3	The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates. Construction and Building Materials, 2017, 137, 420-431.	3.2	105
4	The Influence of Nano-Fe3O4 on the Microstructure and Mechanical Properties of Cementitious Composites. Nanoscale Research Letters, 2016, 11, 182.	3.1	92
5	Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches. Materials, 2017, 10, 1354.	1.3	85
6	The effects of silica/titania nanocomposite on the mechanical and bactericidal properties of cement mortars. Construction and Building Materials, 2017, 150, 738-746.	3.2	83
7	Hydro-abrasive erosion of high performance fiber-reinforced concrete. Wear, 2009, 267, 110-115.	1.5	82
8	Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials. Materials, 2016, 9, 701.	1.3	70
9	External treatments for the preventive repair of existing constructions: A review. Construction and Building Materials, 2018, 193, 435-452.	3.2	68
10	Thermal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanosilica. Procedia Engineering, 2017, 196, 159-166.	1.2	67
11	Mechanical Properties of Shielding Concrete with Magnetite Aggregate Subjected to High Temperature. Procedia Engineering, 2015, 108, 39-46.	1.2	62
12	Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica. Applied Surface Science, 2017, 407, 391-397.	3.1	56
13	The Effect of Nanosilica on the Mechanical Properties of polymer-Cement Composites (PCC). Procedia Engineering, 2015, 108, 139-145.	1.2	39
14	Effects of fluidal fly ash on abrasion resistance of underwater repair concrete. Wear, 2017, 376-377, 15-21.	1.5	35
15	The Effect of Nanosilica and Titanium Dioxide on the Mechanical and Self-Cleaning Properties of Waste-Glass Cement Mortar. Procedia Engineering, 2015, 108, 146-153.	1.2	33
16	The model of abrasive wear of concrete in hydraulic structures. Wear, 2004, 256, 787-796.	1.5	32
17	Mathematical model of abrasive wear of high performance concrete. Wear, 2008, 264, 113-118.	1.5	32
18	Properties of Cement-Based Composites Modified with Magnetite Nanoparticles: A Review. Materials,	13	32

2019, 12, 326.

#	Article	IF	CITATIONS
19	Bond strength of underwater repair concretes under hydrostatic pressure. Construction and Building Materials, 2014, 72, 167-173.	3.2	31
20	Effect of incorporation route on dispersion of mesoporous silica nanospheres in cement mortar. Construction and Building Materials, 2014, 66, 418-421.	3.2	30
21	Investigation of gamma ray shielding efficiency and physicomechanical performances of heavyweight concrete subjected to high temperature. Construction and Building Materials, 2019, 195, 574-582.	3.2	29
22	Incorporation of magnetite powder as a cement additive for improving thermal resistance and gamma-ray shielding properties of cement-based composites. Construction and Building Materials, 2019, 204, 113-121.	3.2	29
23	The effects of Fe3O4 and Fe3O4/SiO2 nanoparticles on the mechanical properties of cement mortars exposed to elevated temperatures. Construction and Building Materials, 2018, 182, 441-450.	3.2	28
24	Influence of Dispersing Method on the Quality of Nano-Admixtures Homogenization in Cement Matrix. Materials, 2020, 13, 4865.	1.3	21
25	Properties of Underwater Concretes Containing Large Amount of Fly Ashes. Procedia Engineering, 2017, 196, 97-104.	1.2	16
26	Mechanical properties cement based composites modified with nano-Fe3O4/SiO2. Construction and Building Materials, 2020, 251, 118945.	3.2	15
27	The Influence of Natural and Nano-additives on Early Strength of Cement Mortars. Procedia Engineering, 2017, 172, 127-134.	1.2	13
28	Effect of Nano-SiO2 on the Microstructure and Mechanical Properties of Concrete under High Temperature Conditions. Materials, 2022, 15, 166.	1.3	13
29	Application of Nanomaterials in Production of Self-Sensing Concretes: Contemporary Developments and Prospects. Archives of Civil Engineering, 2016, 62, 61-74.	0.7	11
30	Waste-free synthesis of silica nanospheres and silica nanocoatings from recycled ethanol–ammonium solution. Chemical Papers, 2017, 71, 841-848.	1.0	10
31	The effect of nanomaterials on thermal resistance of cement-based composites exposed to elevated temperature. Materials Today: Proceedings, 2018, 5, 15968-15975.	0.9	9
32	Influence of surface preparation on adhesion of underwater repair concretes under hydrostatic pressure. Construction and Building Materials, 2021, 310, 125153.	3.2	8
33	Properties of Cement Composites Modified with Silica-magnetite Nanostructures. Procedia Engineering, 2017, 196, 105-112.	1.2	7
34	Influence of Hydrostatic Pressure on Compressive Strength of Self-consolidating Concrete. Journal of Civil Engineering and Architecture, 2014, 8, .	0.0	4
35	Use of a 3D scanner for imaging concrete sample surfaces abraded with the ASTM C 1138 method. , 2018, , .		3
36	Effects of Elevated Temperatures on the Properties of Cement Mortars with the Iron Oxides Concentrate. Materials, 2021, 14, 148.	1.3	2

#	Article	IF	CITATIONS
37	Application of the nanoindentation method in assessing of properties of cement composites modified with silica-magnetite nanostructures. MATEC Web of Conferences, 2018, 163, 02002.	0.1	1
38	Mechanical Properties of Mortars Containing Waste Glass Powder. Periodica Polytechnica Architecture, 2019, 50, 30-34.	0.1	1
39	Use of Fluidized Bed Combustion Fly Ash as a Partial Substitute for Cement in Underwater Concrete Mixes. Materials, 2022, 15, 4809.	1.3	1
40	Chloride corrosion resistance of underwater repair concrete in terms of the cutting effects of hydrostatic pressure. Budownictwo I Architektura, 2020, 12, 161-168.	0.1	0
41	ANALYSIS OF THE ASSESSMENT OF THE CONSUMPTION STATE OF CONCRETE ABRASIVE SURFACES USING SPATIAL SCANNING. Tribologia, 2018, 282, 31-35.	0.0	0