
Zhaoyu Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7583363/publications.pdf Version: 2024-02-01

ΖΗΛΟΥΙΙΙΝ

#	Article	IF	CITATIONS
1	Stretchable Allâ€Gelâ€State Fiberâ€Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels. Advanced Materials, 2018, 30, e1800124.	11.1	396
2	Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nature Catalysis, 2021, 4, 615-622.	16.1	336
3	Metallic Co ₂ P ultrathin nanowires distinguished from CoP as robust electrocatalysts for overall water-splitting. Green Chemistry, 2016, 18, 1459-1464.	4.6	254
4	A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy and Environmental Science, 2021, 14, 3522-3531.	15.6	243
5	Three-dimensional coral-like cobalt selenide as an advanced electrocatalyst for highly efficient oxygen evolution reaction. Electrochimica Acta, 2016, 194, 59-66.	2.6	128
6	A trimetallic V–Co–Fe oxide nanoparticle as an efficient and stable electrocatalyst for oxygen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 17763-17770.	5.2	121
7	Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 18593-18599.	5.2	109
8	A Surface‣trained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis. Angewandte Chemie - International Edition, 2020, 59, 22610-22616.	7.2	100
9	Probing Enhanced Site Activity of Co–Fe Bimetallic Subnanoclusters Derived from Dual Cross-Linked Hydrogels for Oxygen Electrocatalysis. ACS Energy Letters, 2019, 4, 1793-1802.	8.8	99
10	A one-step synthesis of Co–P–B/rGO at room temperature with synergistically enhanced electrocatalytic activity in neutral solution. Journal of Materials Chemistry A, 2014, 2, 18420-18427.	5.2	96
11	Porous Two-dimensional Iron-Cyano Nanosheets for High-rate Electrochemical Nitrate Reduction. ACS Nano, 2022, 16, 1072-1081.	7.3	89
12	Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Materials Today, 2020, 35, 78-86.	8.3	88
13	Highly Active 3D-Nanoarray-Supported Oxygen-Evolving Electrode Generated From Cobalt-Phytate Nanoplates. Chemistry of Materials, 2016, 28, 153-161.	3.2	69
14	Three-dimensional nanotube-array anode enables a flexible Ni/Zn fibrous battery to ultrafast charge and discharge in seconds. Energy Storage Materials, 2018, 12, 232-240.	9.5	66
15	Atom-by-atom electrodeposition of single isolated cobalt oxide molecules and clusters for studying the oxygen evolution reaction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12651-12656.	3.3	63
16	Coupling cobalt-iron bimetallic nitrides and N-doped multi-walled carbon nanotubes as high-performance bifunctional catalysts for oxygen evolution and reduction reaction. Electrochimica Acta, 2017, 258, 51-60.	2.6	61
17	Enhanced Electrocatalytic Performance for Oxygen Reduction via Active Interfaces of Layer-By-Layered Titanium Nitride/Titanium Carbonitride Structures. Scientific Reports, 2014, 4, 6712.	1.6	59
18	Emerging Electrochemical Techniques for Probing Site Behavior in Single-Atom Electrocatalysts. Accounts of Chemical Research, 2022, 55, 759-769.	7.6	58

ΖΗΑΟΥΊ ΙΝ

#	Article	IF	CITATIONS
19	Enhancing catalytic formaldehyde oxidation on CuO–Ag2O nanowires for gas sensing and hydrogen evolution. Journal of Materials Chemistry A, 2013, 1, 14736.	5.2	52
20	Recent progress in conductive polymers for advanced fiber-shaped electrochemical energy storage devices. Materials Chemistry Frontiers, 2021, 5, 1140-1163.	3.2	51
21	Surface Interrogation of Electrodeposited MnO _x and CaMnO ₃ Perovskites by Scanning Electrochemical Microscopy: Probing Active Sites and Kinetics for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 794-799.	7.2	51
22	Ultra-fast pyrolysis of ferrocene to form Fe/C heterostructures as robust oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2018, 6, 21577-21584.	5.2	50
23	A phytic acid etched Ni/Fe nanostructure based flexible network as a high-performance wearable hybrid energy storage device. Journal of Materials Chemistry A, 2017, 5, 3274-3283.	5.2	48
24	Superficial-defect engineered nickel/iron oxide nanocrystals enable high-efficient flexible fiber battery. Energy Storage Materials, 2018, 13, 160-167.	9.5	48
25	Confining intermediates within a catalytic nanoreactor facilitates nitrate-to-ammonia electrosynthesis. Applied Catalysis B: Environmental, 2022, 315, 121548.	10.8	44
26	In situ formation of high performance Ni-phytate on Ni-foam for efficient electrochemical water oxidation. Electrochemistry Communications, 2017, 74, 42-47.	2.3	39
27	A Hydrogenâ€Evolving Hybridâ€Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation. ChemSusChem, 2017, 10, 483-488.	3.6	38
28	A robust water oxidation electrocatalyst from amorphous cobalt–iron bimetallic phytate nanostructures. Journal of Materials Chemistry A, 2016, 4, 15888-15895.	5.2	34
29	Microwave-assisted synthesis of the cobalt-iron phosphates nanosheets as an efficient electrocatalyst for water oxidation. Electrochimica Acta, 2018, 260, 420-429.	2.6	34
30	Core-shell copper oxide @ nickel/nickel–iron hydroxides nanoarrays enabled efficient bifunctional electrode for overall water splitting. Electrochimica Acta, 2019, 318, 695-702.	2.6	34
31	Self-enhanced electrogenerated chemiluminescence of ruthenium(<scp>ii</scp>) complexes conjugated with Schiff bases. Dalton Transactions, 2015, 44, 2208-2216.	1.6	28
32	Three-dimensional flexible electrode derived from low-cost nickel–phytate with improved electrochemical performance. Journal of Materials Chemistry A, 2016, 4, 9486-9495.	5.2	28
33	Enhanced electrochemical performance of C-NiO/NiCo2O4//AC asymmetric supercapacitor based on material design and device exploration. Electrochimica Acta, 2019, 296, 335-344.	2.6	27
34	Photoanode-immobilized molecular cobalt-based oxygen-evolving complexes with enhanced solar-to-fuel efficiency. Journal of Materials Chemistry A, 2016, 4, 11228-11233.	5.2	24
35	Tri-metallic phytate in situ electrodeposited on 3D Ni foam as a highly efficient electrocatalyst for enhanced overall water splitting. Journal of Materials Chemistry A, 2017, 5, 18786-18792.	5.2	24
36	A Surfaceâ€Strained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis. Angewandte Chemie, 2020, 132, 22799-22805.	1.6	23

Zhaoyu Jin

#	Article	IF	CITATIONS
37	Boron―and Ironâ€Incorporated αâ€Co(OH) ₂ Ultrathin Nanosheets as an Efficient Oxygen Evolution Catalyst. ChemElectroChem, 2018, 5, 593-597.	1.7	21
38	Sensitive and selective determination of GSH based on the ECL quenching of Ru(II) 1,10-phenanthroline-5,6-dione complex. Biosensors and Bioelectronics, 2016, 77, 182-187.	5.3	20
39	Interconnecting 3D Conductive Networks with Nanostructured Iron/Iron Oxide Enables a High-Performance Flexible Battery. ACS Applied Materials & Interfaces, 2021, 13, 57411-57421.	4.0	19
40	Design principles of hydrogen-evolution-suppressing single-atom catalysts for aqueous electrosynthesis. Chem Catalysis, 2022, 2, 1277-1287.	2.9	19
41	CuO–Ag2O nanoparticles grown on a AgCuZn alloy substrate in situ for use as a highly sensitive non-enzymatic glucose sensor. Analytical Methods, 2014, 6, 2215.	1.3	17
42	Micron Scale Spatial Measurement of the O ₂ Gradient Surrounding a Bacterial Biofilm in Real Time. MBio, 2020, 11, .	1.8	17
43	Ammonia electrosynthesis on single-atom catalysts: Mechanistic understanding and recent progress. Chemical Physics Reviews, 2021, 2, .	2.6	17
44	Enhanced catalytic performance of ZnO-CoOx electrode generated from electrochemical corrosion of Co-Zn alloy for oxygen evolution reaction. Electrochimica Acta, 2016, 222, 999-1006.	2.6	15
45	Surface Interrogation of Electrodeposited MnO _x and CaMnO ₃ Perovskites by Scanning Electrochemical Microscopy: Probing Active Sites and Kinetics for the Oxygen Evolution Reaction. Angewandte Chemie, 2021, 133, 807-812.	1.6	8
46	Lithiated interface of Pt/TiO ₂ enables an efficient wire-shaped Zn–Air solar micro-battery. Chemical Communications, 2022, 58, 5988-5991.	2.2	5
47	The structure and properties of electroless Ni–Mo–Cr–P coatings on copper alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2013, 64, 341-346.	0.8	3
48	Rücktitelbild: A Surfaceâ€Strained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis (Angew. Chem. 50/2020). Angewandte Chemie, 2020, 132, 22992-22992.	1.6	0
49	Erratum for Klementiev et al., "Micron Scale Spatial Measurement of the O ₂ Gradient Surrounding a Bacterial Biofilm in Real Time― MBio, 2022, , e0080322.	1.8	Ο