
Yu Sakurai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/758326/publications.pdf Version: 2024-02-01

VII SAKLIDAL

#	Article	IF	CITATIONS
1	Novel antiangiogenic therapy targeting biglycan using tumor endothelial cellâ€specific liposomal siRNA delivery system. Cancer Science, 2022, 113, 1855-1867.	3.9	12
2	Targeted delivery of lipid nanoparticle to lymphatic endothelial cells via anti-podoplanin antibody. Journal of Controlled Release, 2022, 349, 379-387.	9.9	9
3	Development of Sentinel LN Imaging with a Combination of HAase Based on a Comprehensive Analysis of the Intra-lymphatic Kinetics of LPs. Molecular Therapy, 2021, 29, 225-235.	8.2	10
4	Delivery of Oligonucleotides Using a Self-Degradable Lipid-Like Material. Pharmaceutics, 2021, 13, 544.	4.5	20
5	Optimization of Sentinel Lymph Node Imaging Methodology Using Anionic Liposome and Hyaluronidase. Pharmaceutics, 2021, 13, 1462.	4.5	6
6	Proteomics Analysis of Lymphatic Metastasis-Related Proteins Using Highly Metastatic Human Melanoma Cells Originated by Sequential <i>in Vivo</i> Implantation. Biological and Pharmaceutical Bulletin, 2021, 44, 1551-1556.	1.4	0
7	Improvement of mRNA Delivery Efficiency to a T Cell Line by Modulating PEG-Lipid Content and Phospholipid Components of Lipid Nanoparticles. Pharmaceutics, 2021, 13, 2097.	4.5	11
8	Development of lipid-like materials for RNA delivery based on intracellular environment-responsive membrane destabilization and spontaneous collapse. Advanced Drug Delivery Reviews, 2020, 154-155, 210-226.	13.7	33
9	Silencing of VEGFR2 by RGD-Modified Lipid Nanoparticles Enhanced the Efficacy of Anti-PD-1 Antibody by Accelerating Vascular Normalization and Infiltration of T Cells in Tumors. Cancers, 2020, 12, 3630.	3.7	11
10	Selfâ€Degradable Lipidâ€Like Materials Based on "Hydrolysis accelerated by the intraâ€Particle Enrichment of Reactant (HyPER)―for Messenger RNA Delivery. Advanced Functional Materials, 2020, 30, 1910575.	14.9	65
11	Mitochondrial Delivery of an Anticancer Drug Via Systemic Administration Using a Mitochondrial Delivery System That Inhibits the Growth of Drug-Resistant Cancer Engrafted on Mice. Journal of Pharmaceutical Sciences, 2020, 109, 2493-2500.	3.3	26
12	Improved Stability of siRNA-Loaded Lipid Nanoparticles Prepared with a PEG-Monoacyl Fatty Acid Facilitates Ligand-Mediated siRNA Delivery. Molecular Pharmaceutics, 2020, 17, 1397-1404.	4.6	22
13	Involvement of Caveolin-1-mediated transcytosis in the intratumoral accumulation of liposomes. Biochemical and Biophysical Research Communications, 2020, 525, 313-318.	2.1	9
14	Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opinion on Drug Delivery, 2019, 16, 915-936.	5.0	27
15	Synergistic Enhancement of Cellular Uptake With CD44-Expressing Malignant Pleural Mesothelioma by Combining Cationic Liposome and Hyaluronic Acid–Lipid Conjugate. Journal of Pharmaceutical Sciences, 2019, 108, 3218-3224.	3.3	14
16	Targeting Tumor Endothelial Cells with Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 5819.	4.1	35
17	Failure of active targeting by a cholesterol-anchored ligand and improvement by altering the lipid composition to prevent ligand desorption. International Journal of Pharmaceutics, 2018, 536, 42-49.	5.2	4
18	Effective Therapy Using a Liposomal siRNA that Targets the Tumor Vasculature in a Model Murine Breast Cancer with Lung Metastasis. Molecular Therapy - Oncolytics, 2018, 11, 102-108.	4.4	19

Yu Sakurai

#	Article	IF	CITATIONS
19	Research and Development of Rubber Bearings for Sodium-Cooled Fast Reactor: Ultimate Properties of Half-Scale Thick Rubber Bearings Based on Breaking Tests. Journal of Pressure Vessel Technology, Transactions of the ASME, 2018, 140, .	0.6	6
20	EPR effect and development of new strategy for nanoparticle delivery via remodeling tumor microenvironment based on tumor vasculature targeting. Drug Delivery System, 2018, 33, 98-104.	0.0	1
21	Scalable preparation of poly(ethylene glycol)-grafted siRNA-loaded lipid nanoparticles using a commercially available fluidic device and tangential flow filtration. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1086-1096.	3.5	3
22	Modality of tumor endothelial VEGFR2 silencing-mediated improvement in intratumoral distribution of lipid nanoparticles. Journal of Controlled Release, 2017, 251, 1-10.	9.9	33
23	The Delivery of Small Interfering RNA to Hepatic Stellate Cells Using a Lipid Nanoparticle Composed of a Vitamin A-Scaffold Lipid-Like Material. Journal of Pharmaceutical Sciences, 2017, 106, 2046-2052.	3.3	17
24	Mitochondrial Delivery of Doxorubicin Using MITO-Porter Kills Drug-Resistant Renal Cancer Cells via Mitochondrial Toxicity. Journal of Pharmaceutical Sciences, 2017, 106, 2428-2437.	3.3	21
25	Efficient siRNA Delivery by Lipid Nanoparticles Modified with a Nonstandard Macrocyclic Peptide for EpCAM-Targeting. Molecular Pharmaceutics, 2017, 14, 3290-3298.	4.6	28
26	Nano-sized drug carriers: Extravasation, intratumoral distribution, and their modeling. Journal of Controlled Release, 2017, 267, 31-46.	9.9	32
27	Innovative Technologies in Nanomedicines: From Passive Targeting to Active Targeting/From Controlled Pharmacokinetics to Controlled Intracellular Pharmacokinetics. Macromolecular Bioscience, 2017, 17, 1600179.	4.1	23
28	Modifying Cationic Liposomes with Cholesteryl-PEG Prevents Their Aggregation in Human Urine and Enhances Cellular Uptake by Bladder Cancer Cells. Biological and Pharmaceutical Bulletin, 2017, 40, 234-237.	1.4	17
29	Effect of particle size on their accumulation in an inflammatory lesion in a dextran sulfate sodium (DSS)-induced colitis model. International Journal of Pharmaceutics, 2016, 509, 118-122.	5.2	43
30	Protecting liver sinusoidal endothelial cells suppresses apoptosis in acute liver damage. Hepatology Research, 2016, 46, 697-706.	3.4	13
31	Liver-Specific Silencing of Lipin1 Reduces Fat Mass as Well as Hepatic Triglyceride Biosynthesis in Mice. Biological and Pharmaceutical Bulletin, 2016, 39, 1653-1661.	1.4	10
32	Remodeling of the Extracellular Matrix by Endothelial Cell-Targeting siRNA Improves the EPR-Based Delivery of 100 nm Particles. Molecular Therapy, 2016, 24, 2090-2099.	8.2	45
33	Heterogeneity of tumor endothelial cells and drug delivery. Advanced Drug Delivery Reviews, 2016, 99, 140-147.	13.7	88
34	Preparation of a Cyclic RGD: Modified Liposomal SiRNA Formulation for Use in Active Targeting to Tumor and Tumor Endothelial Cells. Methods in Molecular Biology, 2016, 1364, 63-69.	0.9	5
35	Anti-angiogenic Therapy by Targeting the Tumor Vasculature with Liposomes. Fundamental Biomedical Technologies, 2016, , 201-228.	0.2	0
36	Efficient Packaging of Plasmid DNA Using a pH Sensitive Cationic Lipid for Delivery to Hepatocytes. Biological and Pharmaceutical Bulletin, 2015, 38, 1185-1191.	1.4	6

Yu Sakurai

#	Article	IF	CITATIONS
37	Development on Rubber Bearings for Sodium-Cooled Fast Reactor: Part 2 — Fundamental Characteristics of Half-Scale Rubber Bearings Based on Static Test. , 2015, , .		6
38	Optimization of a siRNA Carrier Modified with a pH-Sensitive Cationic Lipid and a Cyclic RGD Peptide for Efficiently Targeting Tumor Endothelial Cells. Pharmaceutics, 2015, 7, 320-333.	4.5	22
39	Anti-angiogenic nanotherapy via active targeting systems to tumors and adipose tissue vasculature. Biomaterials Science, 2015, 3, 1253-1265.	5.4	18
40	The RNA Sensor RIG-I Dually Functions as an Innate Sensor and Direct Antiviral Factor for Hepatitis B Virus. Immunity, 2015, 42, 123-132.	14.3	353
41	Advances in an active and passive targeting to tumor and adipose tissues. Expert Opinion on Drug Delivery, 2015, 12, 41-52.	5.0	43
42	New drug delivery system for liver sinusoidal endothelial cells for ischemia-reperfusion injury. World Journal of Gastroenterology, 2015, 21, 12778.	3.3	10
43	Hepatic Monoacylglycerol O-acyltransferase 1 as a Promising Therapeutic Target for Steatosis, Obesity, and Type 2 Diabetes. Molecular Therapy - Nucleic Acids, 2014, 3, e154.	5.1	40
44	RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system. Journal of Controlled Release, 2014, 173, 110-118.	9.9	103
45	Ligand density at the surface of a nanoparticle and different uptake mechanism: Two important factors for successful siRNA delivery to liver endothelial cells. International Journal of Pharmaceutics, 2014, 475, 227-237.	5.2	21
46	Improvement of Doxorubicin Efficacy Using Liposomal Anti-Polo-like Kinase 1 siRNA in Human Renal Cell Carcinomas. Molecular Pharmaceutics, 2014, 11, 2713-2719.	4.6	41
47	An aptamer ligand based liposomal nanocarrier system that targets tumor endothelial cells. Biomaterials, 2014, 35, 7110-7120.	11.4	62
48	Construction of an Aptamer Modified Liposomal System Targeted to Tumor Endothelial Cells. Biological and Pharmaceutical Bulletin, 2014, 37, 1742-1749.	1.4	13
49	A liposomal delivery system that targets liver endothelial cells based on a new peptide motif present in the ApoB-100 sequence. International Journal of Pharmaceutics, 2013, 456, 195-201.	5.2	24
50	Gene Silencing via RNAi and siRNA Quantification in Tumor Tissue Using MEND, a Liposomal siRNA Delivery System. Molecular Therapy, 2013, 21, 1195-1203.	8.2	112
51	A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. Journal of Controlled Release, 2012, 163, 267-276.	9.9	264
52	Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA. Biomaterials, 2011, 32, 5733-5742.	11.4	107
53	Efficient Short Interference RNA Delivery to Tumor Cells Using a Combination of Octaarginine, GALA and Tumor-Specific, Cleavable Polyethylene Glycol System. Biological and Pharmaceutical Bulletin, 2009, 32, 928-932.	1.4	43
54	A complicated interpretation of a therapeutic effect with humanized mice using a novel peptide platform. Biotarget, 0, 1, 4-4.	0.5	3