
Yoshikazu Ohya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7581769/publications.pdf Version: 2024-02-01

Υσεμικάζιι Ομνά

#	Article	IF	CITATIONS
1	A global genetic interaction network maps a wiring diagram of cellular function. Science, 2016, 353, .	12.6	979
2	ldentification of Yeast Rho1p GTPase as a Regulatory Subunit of 1,3-β-Glucan Synthase. Science, 1996, 272, 279-281.	12.6	449
3	Exploring the Mode-of-Action of Bioactive Compounds by Chemical-Genetic Profiling in Yeast. Cell, 2006, 126, 611-625.	28.9	447
4	Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. Journal of Bacteriology, 1990, 172, 741-747.	2.2	399
5	High-dimensional and large-scale phenotyping of yeast mutants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19015-19020.	7.1	276
6	Activation of Yeast Protein Kinase C by Rho1 GTPase. Journal of Biological Chemistry, 1996, 271, 9193-9196.	3.4	275
7	Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae EMBO Journal, 1996, 15, 6060-6068.	7.8	254
8	Mitochondria-specific RNA-modifying Enzymes Responsible for the Biosynthesis of the Wobble Base in Mitochondrial tRNAs. Journal of Biological Chemistry, 2005, 280, 1613-1624.	3.4	192
9	Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet- phenotype are ascribable to defects of vacuolar membrane H(+)-ATPase activity. Journal of Biological Chemistry, 1991, 266, 13971-13977.	3.4	182
10	Phosphatidylinositol-4-phosphate 5-Kinase Localized on the Plasma Membrane Is Essential for Yeast Cell Morphogenesis. Journal of Biological Chemistry, 1998, 273, 15779-15786.	3.4	164
11	A novel gene, STT4, encodes a phosphatidylinositol 4-kinase in the PKC1 protein kinase pathway of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1994, 269, 1166-72.	3.4	158
12	Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet- phenotype are ascribable to defects of vacuolar membrane H(+)-ATPase activity. Journal of Biological Chemistry, 1991, 266, 13971-7.	3.4	156
13	Diverse essential functions revealed by complementing yeast calmodulin mutants. Science, 1994, 263, 963-966.	12.6	154
14	The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Current Biology, 1998, 8, 1211-S2.	3.9	148
15	Polo-Like Kinase Cdc5 Controls the Local Activation of Rho1 to Promote Cytokinesis. Science, 2006, 313, 108-111.	12.6	139
16	A Fluorescent Indicator for Detecting Proteinâ^'Protein Interactions in Vivo Based on Protein Splicing. Analytical Chemistry, 2000, 72, 5151-5157.	6.5	134
17	A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint. Nature Cell Biology, 2001, 3, 417-420.	10.3	133
18	VMA13 encodes a 54-kDa vacuolar H(+)-ATPase subunit required for activity but not assembly of the enzyme complex in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1993, 268, 18286-92.	3.4	128

#	Article	lF	CITATIONS
19	Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO Journal, 1996, 15, 6060-8.	7.8	127
20	Dissection of Upstream Regulatory Components of the Rho1p Effector, 1,3-β-Glucan Synthase, inSaccharomyces cerevisiae. Genetics, 2002, 162, 663-676.	2.9	112
21	Calcium-sensitive cls4 mutant of Saccharomyces cerevisiae with a defect in bud formation. Journal of Bacteriology, 1986, 165, 28-33.	2.2	102
22	Mutations in yeast calmodulin cause defects in spindle pole body functions and nuclear integrity Journal of Cell Biology, 1992, 119, 1625-1639.	5.2	95
23	Yeast CAL1 is a structural and functional homologue to the DPR1 (RAM) gene involved in ras processing. Journal of Biological Chemistry, 1991, 266, 12356-60.	3.4	95
24	Nucleotide sequence of the CLS4 (CDC24) gene of Saccharomyces cerevisiae. Gene, 1987, 54, 125-132.	2.2	93
25	Intelligent image-activated cell sorting 2.0. Lab on A Chip, 2020, 20, 2263-2273.	6.0	93
26	Virtual-freezing fluorescence imaging flow cytometry. Nature Communications, 2020, 11, 1162.	12.8	93
27	Genetic interactions among genes involved in the STT4-PKC1 pathway of Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1994, 242, 631-640.	2.4	92
28	Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits. PLoS Genetics, 2007, 3, e31.	3.5	92
29	Plant-derived antifungal agent poacic acid targets β-1,3-glucan. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1490-7.	7.1	91
30	Cloning of the RHO1 gene from Candida albicans and its regulation of beta-1,3-glucan synthesis. Journal of Bacteriology, 1997, 179, 7734-7741.	2.2	86
31	SCMD: Saccharomyces cerevisiae Morphological Database. Nucleic Acids Research, 2004, 32, 319D-322.	14.5	84
32	The Dual Activity Responsible for the Elongation and Branching of β-(1,3)-Glucan in the Fungal Cell Wall. MBio, 2017, 8, .	4.1	84
33	Cooperation of Calcineurin and Vacuolar H+-ATPase in Intracellular Ca2+Homeostasis of Yeast Cells. Journal of Biological Chemistry, 1995, 270, 10113-10119.	3.4	82
34	Movement of yeast 1,3-β-glucan synthase is essential for uniform cell wall synthesis. Genes To Cells, 2002, 7, 1-9.	1.2	82
35	Genetic study of the role of calcium ions in the cell division cycle of Saccharomyces cerevisiae: A calcium-dependent mutant and its trifluoperazine-dependent pseudorevertants. Molecular Genetics and Genomics, 1984, 193, 389-394.	2.4	79
36	Functional annotation of chemical libraries across diverse biological processes. Nature Chemical Biology, 2017, 13, 982-993.	8.0	76

Υοςηικαζυ Οηγα

#	Article	IF	CITATIONS
37	VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H(+)-ATPase activity. Journal of Biological Chemistry, 1991, 266, 24526-32.	3.4	76
38	Operon structure of flagellar genes in Salmonella typhimurium. Molecular Genetics and Genomics, 1988, 214, 11-15.	2.4	75
39	Suppression of yeast geranylgeranyl transferase I defect by alternative prenylation of two target GTPases, Rho1p and Cdc42p Molecular Biology of the Cell, 1993, 4, 1017-1025.	2.1	74
40	Mutations in Fks1p affect the cell wall content of ?-1,3- and ?-1,6-glucan inSaccharomyces cerevisiae. Yeast, 2002, 19, 671-690.	1.7	73
41	Protein-splicing Reaction via a Thiazolidine Intermediate: Crystal Structure of the VMA1-derived Endonuclease Bearing the N and C-terminal Propeptides. Journal of Molecular Biology, 2002, 316, 919-929.	4.2	72
42	Genetic and cell biological aspects of the yeast vacuolar H+-ATPase. Journal of Bioenergetics and Biomembranes, 1992, 24, 395-405.	2.3	71
43	Vanillin Inhibits Translation and Induces Messenger Ribonucleoprotein (mRNP) Granule Formation in Saccharomyces cerevisiae: Application and Validation of High-Content, Image-Based Profiling. PLoS ONE, 2013, 8, e61748.	2.5	71
44	Identification of Three Core Regions Essential for Protein Splicing of the Yeast Vma1 Protozyme. Journal of Biological Chemistry, 1997, 272, 15668-15674.	3.4	70
45	Yeast Lrg1p acts as a specialized RhoGAP regulating 1,3-?-glucan synthesis. Yeast, 2001, 18, 943-951.	1.7	69
46	VMA12 is essential for assembly of the vacuolar H(+)-ATPase subunits onto the vacuolar membrane in Saccharomyces cerevisiae Journal of Biological Chemistry, 1993, 268, 961-967.	3.4	67
47	Genetic Evidence for In Vivo Cross-Specificity of the CaaX-Box Protein Prenyltransferases Farnesyltransferase and Geranylgeranyltransferase-I in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1993, 13, 4260-4275.	2.3	65
48	VMA12 is essential for assembly of the vacuolar H(+)-ATPase subunits onto the vacuolar membrane in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1993, 268, 961-7.	3.4	63
49	Lack of GTP-bound Rho1p in secretory vesicles of Saccharomyces cerevisiae. Journal of Cell Biology, 2003, 162, 85-97.	5.2	62
50	Single-cell phenomics reveals intra-species variation of phenotypic noise in yeast. BMC Systems Biology, 2013, 7, 54.	3.0	62
51	Two yeast genes encoding calmodulin-dependent protein kinases. Isolation, sequencing and bacterial expressions of CMK1 and CMK2. Journal of Biological Chemistry, 1991, 266, 12784-94.	3.4	62
52	RHO gene products, putative small GTP-binding proteins, are importnat for activation of theCAL1/CDC43 gene product, a protein geranylgeranyltransferase inSaccharomyces cerevisiae. Yeast, 1992, 8, 735-741.	1.7	61
53	Purification and biochemical properties of calmodulin from Saccharomyces cerevisiae. FEBS Journal, 1987, 168, 13-19.	0.2	60
54	Homologous Subunits of 1,3-Beta-Glucan Synthase Are Important for Spore Wall Assembly in Saccharomyces cerevisiae. Eukaryotic Cell, 2007, 6, 143-156.	3.4	60

Yoshikazu Ohya

#	Article	IF	CITATIONS
55	DEVELOPMENT OF IMAGE PROCESSING PROGRAM FOR YEAST CELL MORPHOLOGY. Journal of Bioinformatics and Computational Biology, 2004, 01, 695-709.	0.8	57
56	Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Scientific Reports, 2018, 8, 5617.	3.3	57
57	Multiple Functional Domains of the Yeast I,3-β-Glucan Synthase Subunit Fks1p Revealed by Quantitative Phenotypic Analysis of Temperature-Sensitive Mutants. Genetics, 2010, 184, 1013-1024.	2.9	56
58	Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments. Science Advances, 2020, 6, eaba6712.	10.3	56
59	Molecular genetics of the yeast vacuolar H+-ATPase. Journal of Experimental Biology, 1992, 172, 67-81.	1.7	55
60	Comprehensive and quantitative analysis of yeast deletion mutants defective in apical and isotropic bud growth. Current Genetics, 2009, 55, 365-380.	1.7	50
61	A galactose-dependent cmd1 mutant of Saccharomyces cerevisiae: involvement of calmodulin in nuclear division. Current Genetics, 1989, 15, 113-120.	1.7	49
62	Conditional lethality of a yeast strain expressing human RHOA in place of RHO1 Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9317-9321.	7.1	48
63	An FH domain-containing Bnr1p is a multifunctional protein interacting with a variety of cytoskeletal proteins in Saccharomyces cerevisiae. Oncogene, 1999, 18, 7046-7054.	5.9	48
64	High-Content, Image-Based Screening for Drug Targets in Yeast. PLoS ONE, 2010, 5, e10177.	2.5	48
65	G1/S Cyclin-dependent Kinase Regulates Small GTPase Rho1p through Phosphorylation of RhoGEF Tus1p in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2008, 19, 1763-1771.	2.1	47
66	Structure-based systematic isolation of conditional-lethal mutations in the single yeast calmodulin gene Genetics, 1994, 138, 1041-1054.	2.9	47
67	Prenylation of Rho1p Is Required for Activation of Yeast 1,3-β-Clucan Synthase. Journal of Biological Chemistry, 1999, 274, 38119-38124.	3.4	45
68	Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2014, 117, 33-38.	2.2	45
69	Isolation and Characterization of Ca2+-sensitive Mutants of Saccharomyces cerevisiae. Microbiology (United Kingdom), 1986, 132, 979-988.	1.8	44
70	Functional expression of chicken calmodulin in yeast. Biochemical and Biophysical Research Communications, 1989, 158, 541-547.	2.1	44
71	Molecular genetics of the yeast vacuolar H(+)-ATPase. Journal of Experimental Biology, 1992, 172, 67-81.	1.7	44
72	Dynactin is involved in a checkpoint to monitor cell wall synthesis in Saccharomyces cerevisiae. Nature Cell Biology, 2004, 6, 861-871.	10.3	43

#	Article	IF	CITATIONS
73	<i>ROM7/BEM4</i> Encodes a Novel Protein That Interacts with the Rho1p Small GTP-Binding Protein in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1996, 16, 4396-4403.	2.3	42
74	Occurrence, horizontal transfer and degeneration ofVDE intein family in Saccharomycete yeasts. Yeast, 2003, 20, 563-573.	1.7	42
75	Complementing Yeast rho1 Mutation Groups with Distinct Functional Defects. Journal of Biological Chemistry, 2001, 276, 46165-46171.	3.4	39
76	Testing the neutral hypothesis of phenotypic evolution. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12219-12224.	7.1	38
77	A DBL-homologous region of the yeast CLS4CDC24 gene product is important for Ca2+-modulated bud assembly. Biochemical and Biophysical Research Communications, 1991, 181, 604-610.	2.1	37
78	Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data. Molecular Biology of the Cell, 2014, 25, 222-233.	2.1	37
79	Yeast Cls2p/Csg2p localized on the endoplasmic reticulum membrane regulates a non-exchangeable intracellular Ca2+pool cooperatively with calcineurin. FEBS Letters, 1996, 379, 38-42.	2.8	36
80	Probing Novel Elements for Protein Splicing in the Yeast Vmal Protozyme: A Study of Replacement Mutagenesis and Intragenic Suppression. Genetics, 1997, 147, 73-85.	2.9	36
81	Atg4 plays an important role in efficient expansion of autophagic isolation membranes by cleaving lipidated Atg8 in Saccharomyces cerevisiae. PLoS ONE, 2017, 12, e0181047.	2.5	36
82	The CLS2 gene encodes a protein with multiple membrane-spanning domains that is important Ca2+ tolerance in yeast. Molecular Genetics and Genomics, 1995, 246, 269-281.	2.4	34
83	STT3, a novel essential gene related to the PKC1/STT1 protein kinase pathway, is involved in protein glycosylation in yeast. Gene, 1995, 164, 167-172.	2.2	34
84	Molecular cloning and characterization of Drosophila genes encoding small GTPases of the rab and rho families. Molecular Genetics and Genomics, 1997, 254, 486-494.	2.4	33
85	High-dimensional single-cell phenotyping reveals extensive haploinsufficiency. PLoS Biology, 2018, 16, e2005130.	5.6	32
86	Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program. Journal of Biotechnology, 2009, 141, 109-117.	3.8	31
87	Signaling toward Yeast 1,3BETAglucan Synthesis Cell Structure and Function, 1996, 21, 395-402.	1.1	30
88	Yeast 1,3-β-Glucan Synthase Activity Is Inhibited by Phytosphingosine Localized to the Endoplasmic Reticulum. Journal of Biological Chemistry, 2001, 276, 26923-26930.	3.4	30
89	Piperazine Propanol Derivative as a Novel Antifungal Targeting 1,3BETAD-Glucan Synthase. Biological and Pharmaceutical Bulletin, 2005, 28, 2138-2141.	1.4	30
90	Yeast species-specific, differential inhibition of β-1,3-glucan synthesis by poacic acid and caspofungin. Cell Surface, 2018, 3, 12-25.	3.0	30

Υοςηικαζυ Οηγα

#	Article	IF	CITATIONS
91	Cucurbitacin B Exerts Antiaging Effects in Yeast by Regulating Autophagy and Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	4.0	30
92	Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Clucose Synthesis Pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2016, 82, 340-351.	3.1	28
93	Single-cell phenomics in budding yeast. Molecular Biology of the Cell, 2015, 26, 3920-3925.	2.1	27
94	Yeast calmodulin localizes to sites of cell growth. Protoplasma, 1992, 166, 110-113.	2.1	26
95	Folding-Dependentin VitroProtein Splicing of theSaccharomyces cerevisiae VMA1Protozyme. Biochemical and Biophysical Research Communications, 1996, 222, 827-832.	2.1	26
96	Involvement of actin and polarisome in morphological change during spore germination of Saccharomyces cerevisiae. Yeast, 2005, 22, 129-139.	1.7	26
97	Half-calmodulin is sufficient for cell proliferation. Expressions of N- and C-terminal halves of calmodulin in the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 1991, 266, 7008-15.	3.4	26
98	Importance of Phenylalanine Residues of Yeast Calmodulin for Target Binding and Activation. Journal of Biological Chemistry, 1998, 273, 26375-26382.	3.4	25
99	Profiling of the effects of antifungal agents on yeast cells based on morphometric analysis. FEMS Yeast Research, 2015, 15, fov040.	2.3	25
100	Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding. G3: Genes, Genomes, Genetics, 2017, 7, 2807-2820.	1.8	25
101	Yeast calmodulin: Structural and functional elements essential for the cell cycle. Cell Calcium, 1992, 13, 445-455.	2.4	24
102	Diversity of Ca2+-Induced Morphology Revealed by Morphological Phenotyping of Ca2+-Sensitive Mutants of Saccharomyces cerevisiae. Eukaryotic Cell, 2007, 6, 817-830.	3.4	24
103	History, lineage and phenotypic differentiation of sake yeast. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1442-1448.	1.3	24
104	Homing at an extragenic locus mediated by VDE (PI-Scel) inSaccharomyces cerevisiae. Yeast, 2002, 19, 773-782.	1.7	23
105	VDE-initiated intein homing in Saccharomyces cerevisiae proceeds in a meiotic recombination-like manner. Genes To Cells, 2003, 8, 587-602.	1.2	23
106	The cell wall integrity checkpoint: coordination between cell wall synthesis and the cell cycle. Yeast, 2010, 27, 513-519.	1.7	23
107	Analysis of the biological activity of a novel 24-membered macrolide JBIR-19 in Saccharomyces cerevisiae by the morphological imaging program CalMorph. FEMS Yeast Research, 2012, 12, 293-304.	2.3	23
108	Applications of the Long and Accurate Polymerase Chain Reaction Method in Yeast Molecular Biology: Direct Sequencing of the Amplified DNA and Its Introduction into Yeast. Yeast, 1997, 13, 763-768.	1.7	22

#	Article	IF	CITATIONS
109	Deep imaging flow cytometry. Lab on A Chip, 2022, 22, 876-889.	6.0	22
110	Unveiling nonessential gene deletions that confer significant morphological phenotypes beyond natural yeast strains. BMC Genomics, 2014, 15, 932.	2.8	21
111	Identification of Functional Connections Between Calmodulin and the Yeast Actin Cytoskeleton. Genetics, 1998, 150, 43-58.	2.9	21
112	Calmodulin-dependent protein kinase II and calmodulin are required for induced thermotolerance in Saccharomyces cerevisiae. Current Genetics, 1995, 27, 190-193.	1.7	20
113	Role of bottom-fermenting brewer's yeast KEX2 in high temperature resistance and poor proliferation at low temperatures. Journal of General and Applied Microbiology, 2010, 56, 297-312.	0.7	20
114	Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast. Journal of Bioscience and Bioengineering, 2011, 112, 577-582.	2.2	20
115	Global study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae. BMC Genomics, 2018, 19, 149.	2.8	20
116	Cloning and Nucleotide Sequence of the Calmodulin-Encoding Gene (cmdA) fromAspergillus oryzae. Bioscience, Biotechnology and Biochemistry, 1995, 59, 1444-1449.	1.3	19
117	Isolation of a spontaneous cerulenin-resistant sake yeast with both high ethyl caproate-producing ability and normal checkpoint integrity. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1191-1199.	1.3	19
118	STT10, a novel class-D VPS yeast gene required for osmotic integrity related to the PKC1/STT1 protein kinase pathway. Gene, 1995, 160, 117-122.	2.2	18
119	Protein splicing in the yeast Vma1 protozyme: evidence for an intramolecular reaction. FEBS Letters, 1997, 412, 518-520.	2.8	18
120	Karyopherin-Mediated Nuclear Import of the Homing Endonuclease VMA1 -Derived Endonuclease Is Required for Self-Propagation of the Coding Region. Molecular and Cellular Biology, 2003, 23, 1726-1736.	2.3	18
121	Novel 24-membered macrolides, JBIR-19 and -20 isolated from Metarhizium sp. fE61. Journal of Antibiotics, 2009, 62, 159-162.	2.0	18
122	Fluorescent Labeling of Yeast Cell Wall Components. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot085241.	0.3	18
123	Augmentation by calmodulin of ADP-ribosylation factor-stimulated phospholipase D activity in permeabilized rabbit peritoneal neutrophils. Journal of Immunology, 1996, 156, 1229-34.	0.8	18
124	Identification of a mutation causing a defective spindle assembly checkpoint in high ethyl caproate-producing sake yeast strain K1801. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1657-1662.	1.3	17
125	Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions. Journal of Bioscience and Bioengineering, 2017, 123, 183-189.	2.2	17
126	The kinetic landscape and interplay of protein networks in cytokinesis. IScience, 2021, 24, 101917.	4.1	17

#	Article	IF	CITATIONS
127	Genome Editing to Generate Sake Yeast Strains with Eight Mutations That Confer Excellent Brewing Characteristics. Cells, 2021, 10, 1299.	4.1	17
128	Genome editing to generate nonfoam-forming sake yeast strains. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1583-1593.	1.3	16
129	Callose Synthesis Suppresses Cell Death Induced by Low-Calcium Conditions in Leaves. Plant Physiology, 2020, 182, 2199-2212.	4.8	16
130	Zds1/Zds2–PP2ACdc55 complex specifies signaling output from Rho1 GTPase. Journal of Cell Biology, 2016, 212, 51-61.	5.2	15
131	Amino Acid Residues That Define Both the Isoprenoid and CAAX Preferences of the Saccharomyces cerevisiae Protein Farnesyltransferase. Journal of Biological Chemistry, 1998, 273, 9472-9479.	3.4	14
132	Cell shape and growth of budding yeast cells in restrictive microenvironments. Yeast, 2004, 21, 983-989.	1.7	14
133	Hyperspectral imaging techniques for the characterization of <i><scp>H</scp>aematococcus pluvialis</i> (<scp>C</scp> hlorophyceae). Journal of Phycology, 2014, 50, 939-947.	2.3	14
134	Predicting bioprocess targets of chemical compounds through integration of chemical-genetic and genetic interactions. PLoS Computational Biology, 2018, 14, e1006532.	3.2	13
135	Involvement of Rho-type GTPase in control of cell size inSaccharomyces cerevisiae. FEMS Yeast Research, 2007, 7, 569-578.	2.3	12
136	A microfluidic device to acquire high-magnification microphotographs of yeast cells. Cell Division, 2009, 4, 5.	2.4	12
137	<i>S</i> â€adenosylâ€Lâ€homocysteine extends lifespan through methionine restriction effects. Aging Cell, 2022, 21, e13604.	6.7	12
138	Molecular Dissection of ARP1 Regions Required for Nuclear Migration and Cell Wall Integrity Checkpoint Functions in Saccharomyces cerevisiae. Cell Structure and Function, 2005, 30, 57-67.	1.1	11
139	Evaluation of image processing programs for accurate measurement of budding and fission yeast morphology. Current Genetics, 2006, 49, 237-247.	1.7	11
140	Image-Based Monitoring System for Green Algal Haematococcus pluvialis (Chlorophyceae) Cells during Culture. Plant and Cell Physiology, 2013, 54, 1917-1929.	3.1	11
141	Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data. Journal of Bioscience and Bioengineering, 2014, 117, 278-284.	2.2	11
142	Exploiting Single-Cell Quantitative Data to Map Genetic Variants Having Probabilistic Effects. PLoS Genetics, 2016, 12, e1006213.	3.5	11
143	The Late S-Phase Transcription Factor Hcm1 Is Regulated through Phosphorylation by the Cell Wall Integrity Checkpoint. Molecular and Cellular Biology, 2016, 36, 941-953.	2.3	11
144	Current Status and Challenges of Three-Dimensional Modeling and Printing of Tissues and Organs. Tissue Engineering - Part A, 2017, 23, 471-473.	3.1	11

#	Article	IF	CITATIONS
145	Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xeno-pus embryos activates maternal program of apoptosis as a "fail-safe―mechanism of early embryogenesis. Cell Research, 2003, 13, 147-158.	12.0	10
146	Knr4 Nâ€ŧerminal domain controls its localization and function during sexual differentiation and vegetative growth. Yeast, 2010, 27, 563-574.	1.7	10
147	Systematic analysis of Ca ²⁺ homeostasis in <i>Saccharomyces cerevisiae</i> based on chemical-genetic interaction profiles. Molecular Biology of the Cell, 2017, 28, 3415-3427.	2.1	10
148	Al-based forecasting of ethanol fermentation using yeast morphological data. Bioscience, Biotechnology and Biochemistry, 2021, 86, 125-134.	1.3	10
149	A mutation in SPC42, which encodes a component of the spindle pole body, results in production of two-spored asci in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 2001, 265, 585-595.	2.1	9
150	Casein Kinase 1Î ³ Ensures Monopolar Growth Polarity under Incomplete DNA Replication Downstream of Cds1 and Calcineurin in Fission Yeast. Molecular and Cellular Biology, 2015, 35, 1533-1542.	2.3	9
151	The budding yeast RSC complex maintains ploidy by promoting spindle pole body insertion. Journal of Cell Biology, 2018, 217, 2445-2462.	5.2	9
152	Are droplets really suitable for single-cell analysis? A case study on yeast in droplets. Lab on A Chip, 2021, 21, 3793-3803.	6.0	9
153	Poacic acid, a βâ€1,3â€glucan–binding antifungal agent, inhibits cellâ€wall remodeling and activates transcriptional responses regulated by the cellâ€wall integrity and highâ€osmolarity glycerol pathways in yeast. FASEB Journal, 2021, 35, e21778.	0.5	9
154	Jerveratrum-Type Steroidal Alkaloids Inhibit β-1,6-Glucan Biosynthesis in Fungal Cell Walls. Microbiology Spectrum, 2022, 10, e0087321.	3.0	9
155	Fission Yeast Germinal Center (GC) Kinase Ppk11 Interacts with Pmo25 and Plays an Auxiliary Role in Concert with the Morphogenesis Orb6 Network (MOR) in Cell Morphogenesis. Journal of Biological Chemistry, 2010, 285, 35196-35205.	3.4	8
156	Cell cycle-dependent regulation of calmodulin levels in Saccharomyces cerevisiae Journal of General and Applied Microbiology, 1989, 35, 59-63.	0.7	8
157	Genetic profiling of protein burden and nuclear export overload. ELife, 2020, 9, .	6.0	8
158	Quantification of Cell, Actin, and Nuclear DNA Morphology with High-Throughput Microscopy and CalMorph. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot078667.	0.3	7
159	Implications of maintenance of mother–bud neck size in diverse vital processes of Saccharomyces cerevisiae. Current Genetics, 2019, 65, 253-267.	1.7	7
160	Appearance of Poor-fermenting Variants in Brewing Yeast Culture. Bioscience, Biotechnology and Biochemistry, 2001, 65, 2361-2363.	1.3	6
161	Organelle acidification is important for localisation of vacuolar proteins in Saccharomyces cerevisiae. Protoplasma, 2013, 250, 1283-1293.	2.1	6
162	Large-Scale Survey of Intraspecific Fitness and Cell Morphology Variation in a Protoploid Yeast Species. G3: Genes, Genomes, Genetics, 2016, 6, 1063-1071.	1.8	6

#	Article	IF	CITATIONS
163	Genetic dissection of the signaling pathway required for the cell wall integrity checkpoint. Journal of Cell Science, 2018, 131, .	2.0	6
164	Defining Functions of Mannoproteins in Saccharomyces cerevisiae by High-Dimensional Morphological Phenotyping. Journal of Fungi (Basel, Switzerland), 2021, 7, 769.	3.5	6
165	A multinuclear magnetic resonance study of a cls11 mutant showing the Pet- phenotype of Saccharomyces cerevisiae. FEBS Journal, 1990, 193, 111-119.	0.2	5
166	Cu/Zn superoxide dismutase-like immunoreactivity is present in Lewy bodies from Parkinson disease: a light and electron microscopic immunocytochemical study. Acta Neuropathologica, 1995, 89, 471-474.	7.7	5
167	High-throughput platform for yeast morphological profiling predicts the targets of bioactive compounds. Npj Systems Biology and Applications, 2022, 8, 3.	3.0	5
168	Mutational analysis of the beta-subunit of yeast geranylgeranyl transferase I. Molecular Genetics and Genomics, 1996, 252, 1-10.	2.4	5
169	Conditional genomic rearrangement by designed meiotic recombination using VDE (PI-Scel) in yeast. Molecular Genetics and Genomics, 2007, 278, 467-478.	2.1	4
170	Current Status of Multipotent Mesenchymal Stromal Cells. Tissue Engineering - Part B: Reviews, 2014, 20, 189-189.	4.8	4
171	Morphometric analysis of autophagy-related structures in <i>Saccharomyces cerevisiae</i> . Autophagy, 2017, 13, 2104-2110.	9.1	4
172	Simulated microgravity triggers characteristic morphology and stress response in <scp><i>Saccharomyces cerevisiae</i></scp> . Yeast, 2019, 36, 85-97.	1.7	4
173	Overproduction of Cdc24p (Cls4p), a guanine nucleotide-exchange factor toward Cdc42 GTPase, impairs initiation of budding inSaccharomyces cerevisiae. Protoplasma, 1995, 189, 142-148.	2.1	3
174	Investigation of the Mechanism of Meiotic DNA Cleavage by VMA1 -Derived Endonuclease Uncovers a Meiotic Alteration in Chromatin Structure around the Target Site. Eukaryotic Cell, 2006, 5, 981-990.	3.4	3
175	Transcription factors of M-phase cyclin CLB2 in the yeast cell wall integrity checkpoint. Genes and Genetic Systems, 2009, 84, 269-276.	0.7	3
176	Profilin is required for Ca2+ homeostasis and Ca2+-modulated bud formation in yeast. Molecular Genetics and Genomics, 2013, 288, 317-328.	2.1	3
177	Assignment of unimodal probability distribution models for quantitative morphological phenotyping. BMC Biology, 2022, 20, 81.	3.8	3
178	LA-PCR-Based Quick Method for the Identification of Genes Responsible for the Complementation of <i>Saccharomyces cerevisiae </i> Mutations. BioTechniques, 1996, 20, 772-778.	1.8	2
179	Image-Based Prediction of Drug Target in Yeast. Methods in Molecular Biology, 2015, 1263, 319-327.	0.9	2
180	Intelligent sortâ€ŧiming prediction for imageâ€activated cell sorting. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2023, 103, 88-97.	1.5	2

Yoshikazu Ohya

#	Article	IF	CITATIONS
181	A Novel Mechanism of Intragenic Complementation between Phe to Ala Calmodulin Mutations. Journal of Biochemistry, 2004, 135, 289-295.	1.7	1
182	Single-Cell Phenomics in Budding Yeast: Technologies and Applications. , 2019, , 355-379.		1
183	Biosynthetic Enzymes for (1-3)- \hat{l}^2 -Glucans, (1-3;1-6)- \hat{l}^2 -Glucans from Yeasts. , 2009, , 259-282.		Ο
184	What Can We Learn from the Yeast Cell Shape?. Journal of the Brewing Society of Japan, 2011, 106, 630-637.	0.3	0
185	Genetic and chemical perturbation of 1,3-β-glucan synthesis to compromise yeast cell wall integrity. Plant Morphology, 2018, 30, 59-64.	0.1	0
186	Prediction of intracellular target with morphological profiling. Japanese Journal of Pesticide Science, 2017, 42, 91-98.	0.0	0
187	Recent discoveries on the structure and function of organelles in the budding yeast. Plant Morphology, 2018, 30, 1-2.	0.1	0
188	Molecular mechanism of VDE-initiated intein homing in yeast nuclear genome. Advances in Biophysics, 2004, 38, 215-32.	0.5	0