Michiel Vermeulen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7581544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signaling, 2010, 3, ra3.	1.6	1,319
2	Dynamic Readers for 5-(Hydroxy)Methylcytosine and Its Oxidized Derivatives. Cell, 2013, 152, 1146-1159.	13.5	888
3	Selective Anchoring of TFIID to Nucleosomes by Trimethylation of Histone H3 Lysine 4. Cell, 2007, 131, 58-69.	13.5	769
4	Quantitative Interaction Proteomics and Genome-wide Profiling of Epigenetic Histone Marks and Their Readers. Cell, 2010, 142, 967-980.	13.5	710
5	Nucleosome-Interacting Proteins Regulated by DNA and Histone Methylation. Cell, 2010, 143, 470-484.	13.5	524
6	Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nature Protocols, 2018, 13, 530-550.	5.5	454
7	N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nature Structural and Molecular Biology, 2017, 24, 870-878.	3.6	432
8	Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nature Structural and Molecular Biology, 2014, 21, 569-571.	3.6	376
9	Nuclear Pore Components Are Involved in the Transcriptional Regulation of Dosage Compensation in Drosophila. Molecular Cell, 2006, 21, 811-823.	4.5	368
10	SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature, 2014, 510, 283-287.	13.7	331
11	Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature, 2007, 449, 928-932.	13.7	322
12	MBD2/NuRD and MBD3/NuRD, Two Distinct Complexes with Different Biochemical and Functional Properties. Molecular and Cellular Biology, 2006, 26, 843-851.	1.1	290
13	Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nature Chemical Biology, 2014, 10, 574-581.	3.9	270
14	lodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nature Methods, 2008, 5, 459-460.	9.0	268
15	Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics. Nucleic Acids Research, 2013, 41, e28-e28.	6.5	222
16	Regulation of the Histone H4 Monomethylase PR-Set7 by CRL4Cdt2-Mediated PCNA-Dependent Degradation during DNA Damage. Molecular Cell, 2010, 40, 364-376.	4.5	213
17	Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nature Genetics, 2016, 48, 417-426.	9.4	210
18	Quantitative Dissection and Stoichiometry Determination of the Human SET1/MLL Histone Methyltransferase Complexes. Molecular and Cellular Biology, 2013, 33, 2067-2077.	1.1	202

#	Article	IF	CITATIONS
19	MicroRNA Regulation of Cbx7 Mediates a Switch of Polycomb Orthologs during ESC Differentiation. Cell Stem Cell, 2012, 10, 33-46.	5.2	191
20	The Complexity of PRC2 Subcomplexes. Trends in Cell Biology, 2019, 29, 660-671.	3.6	178
21	The dynamic interactome and genomic targets of Polycomb complexes during stem-cell differentiation. Nature Structural and Molecular Biology, 2016, 23, 682-690.	3.6	171
22	The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy. Nature Genetics, 2019, 51, 1645-1651.	9.4	171
23	A Map of General and Specialized Chromatin Readers in Mouse Tissues Generated by Label-free Interaction Proteomics. Molecular Cell, 2013, 49, 368-378.	4.5	170
24	High-throughput identification of human SNPs affecting regulatory element activity. Nature Genetics, 2019, 51, 1160-1169.	9.4	157
25	High confidence determination of specific protein–protein interactions using quantitative mass spectrometry. Current Opinion in Biotechnology, 2008, 19, 331-337.	3.3	156
26	Histone propionylation is a mark of active chromatin. Nature Structural and Molecular Biology, 2017, 24, 1048-1056.	3.6	148
27	MTF2 recruits Polycomb Repressive Complex 2 by helical-shape-selective DNA binding. Nature Genetics, 2018, 50, 1002-1010.	9.4	147
28	Redox-Dependent Control of FOXO/DAF-16 by Transportin-1. Molecular Cell, 2013, 49, 730-742.	4.5	138
29	PRC2.1 and PRC2.2 Synergize to Coordinate H3K27 Trimethylation. Molecular Cell, 2019, 76, 437-452.e6.	4.5	137
30	Probing the Tumor Suppressor Function of BAP1 in CRISPR-Engineered Human Liver Organoids. Cell Stem Cell, 2019, 24, 927-943.e6.	5.2	136
31	Single-Cell DNA Methylation Profiling: Technologies and Biological Applications. Trends in Biotechnology, 2018, 36, 952-965.	4.9	133
32	Characterizing Protein–Protein Interactions Using Mass Spectrometry: Challenges and Opportunities. Trends in Biotechnology, 2016, 34, 825-834.	4.9	131
33	Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. ELife, 2018, 7, .	2.8	125
34	Single-Molecule Imaging Uncovers Rules Governing Nonsense-Mediated mRNA Decay. Molecular Cell, 2019, 75, 324-339.e11.	4.5	116
35	An Interaction Landscape of Ubiquitin Signaling. Molecular Cell, 2017, 65, 941-955.e8.	4.5	109
36	Integrative multiâ€omics analysis of intestinal organoid differentiation. Molecular Systems Biology, 2018. 14. e8227.	3.2	106

3

#	Article	IF	CITATIONS
37	Characterization of Lysine 56 of Histone H3 as an Acetylation Site in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 25949-25952.	1.6	105
38	ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage. Cell Reports, 2016, 17, 783-798.	2.9	100
39	Phosphorylation of Histone H3 Thr-45 Is Linked to Apoptosis. Journal of Biological Chemistry, 2009, 284, 16575-16583.	1.6	98
40	The rRNA m ⁶ A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes and Development, 2020, 34, 715-729.	2.7	93
41	Proteome-Wide Analysis of Disease-Associated SNPs That Show Allele-Specific Transcription Factor Binding. PLoS Genetics, 2012, 8, e1002982.	1.5	92
42	MBD5 and MBD6 interact with the human PRâ€DUB complex through their methyl pGâ€binding domain. Proteomics, 2014, 14, 2179-2189.	1.3	90
43	Integrative Proteomic Profiling Reveals PRC2-Dependent Epigenetic Crosstalk Maintains Ground-State Pluripotency. Cell Stem Cell, 2019, 24, 123-137.e8.	5.2	90
44	The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA. Nucleic Acids Research, 2020, 48, 830-846.	6.5	88
45	Towards elucidating the stability, dynamics and architecture of the nucleosome remodeling and deacetylase complex by using quantitative interaction proteomics. FEBS Journal, 2015, 282, 1774-1785.	2.2	86
46	The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation. EMBO Journal, 2013, 32, 1598-1612.	3.5	80
47	Cdyl, a New Partner of the Inactive X Chromosome and Potential Reader of H3K27me3 and H3K9me2. Molecular and Cellular Biology, 2013, 33, 5005-5020.	1.1	80
48	DNA methylation: old dog, new tricks?. Nature Structural and Molecular Biology, 2014, 21, 949-954.	3.6	79
49	EZHIP constrains Polycomb Repressive Complex 2 activity in germ cells. Nature Communications, 2019, 10, 3858.	5.8	76
50	Insight into the Architecture of the NuRD Complex. Journal of Biological Chemistry, 2014, 289, 21844-21855.	1.6	75
51	Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs. Nucleic Acids Research, 2014, 42, 9880-9891.	6.5	71
52	Predicting protein condensate formation using machine learning. Cell Reports, 2021, 34, 108705.	2.9	70
53	Inactivation of Yeast Isw2 Chromatin Remodeling Enzyme Mimics Longevity Effect of Calorie Restriction via Induction of Genotoxic Stress Response. Cell Metabolism, 2014, 19, 952-966.	7.2	69
54	Grasping trimethylation of histone H3 at lysine 4. Epigenomics, 2010, 2, 395-406.	1.0	66

#	Article	IF	CITATIONS
55	The Nucleosome Remodeling and Deacetylase Complex NuRD Is Built from Preformed Catalytically Active Sub-modules. Journal of Molecular Biology, 2016, 428, 2931-2942.	2.0	62
56	Analysis of the Histone H3.1 Interactome: A Suitable Chaperone for the Right Event. Molecular Cell, 2015, 60, 697-709.	4.5	61
57	Evolutionary Acquisition of Cysteines Determines FOXO Paralog-Specific Redox Signaling. Antioxidants and Redox Signaling, 2015, 22, 15-28.	2.5	61
58	Quantitative Proteomics for Epigenetics. ChemBioChem, 2011, 12, 224-234.	1.3	59
59	Ythdf is a N6â€methyladenosine reader that modulates Fmr1 target mRNA selection and restricts axonal growth in <i>Drosophila</i> . EMBO Journal, 2021, 40, e104975.	3.5	56
60	CDK2AP1/DOC-1 is a bona fide subunit of the Mi-2/NuRD complex. Molecular BioSystems, 2010, 6, 1700.	2.9	54
61	Global profiling of protein–DNA and protein–nucleosome binding affinities using quantitative mass spectrometry. Nature Communications, 2018, 9, 1653.	5.8	54
62	A domesticated transposon mediates the effects of a singleâ€nucleotide polymorphism responsible for enhanced muscle growth. EMBO Reports, 2010, 11, 305-311.	2.0	53
63	Sall4 controls differentiation of pluripotent cells independently of the Nucleosome Remodelling and Deacetylation (NuRD) complex. Development (Cambridge), 2016, 143, 3074-84.	1.2	53
64	Cross-linking immunoprecipitation-MS (xIP-MS): Topological Analysis of Chromatin-associated Protein Complexes Using Single Affinity Purification. Molecular and Cellular Proteomics, 2016, 15, 854-865.	2.5	53
65	Massively parallel reporter assays of melanoma risk variants identify MX2 as a gene promoting melanoma. Nature Communications, 2020, 11, 2718.	5.8	53
66	The Mad1-Sin3B interaction involves a novel helical fold. Nature Structural Biology, 2000, 7, 1100-1104.	9.7	52
67	The interactome of a family of potential methyltransferases in HeLa cells. Scientific Reports, 2019, 9, 6584.	1.6	52
68	A common intronic variant of PARP1 confers melanoma risk and mediates melanocyte growth via regulation of MITF. Nature Genetics, 2017, 49, 1326-1335.	9.4	51
69	An interaction proteomics survey of transcription factor binding at recurrent TERT promoter mutations. Proteomics, 2016, 16, 417-426.	1.3	50
70	Quantification of Proteins and Histone Marks in Drosophila Embryos Reveals Stoichiometric Relationships Impacting Chromatin Regulation. Developmental Cell, 2019, 51, 632-644.e6.	3.1	50
71	BANP opens chromatin and activates CpG-island-regulated genes. Nature, 2021, 596, 133-137.	13.7	49
72	A SILAC-Based Screen for Methyl-CpG Binding Proteins Identifies RBP-J as a DNA Methylation and Sequence-Specific Binding Protein. PLoS ONE, 2011, 6, e25884.	1.1	49

#	Article	IF	CITATIONS
73	Two Chromatin Remodeling Activities Cooperate during Activation of Hormone Responsive Promoters. PLoS Genetics, 2009, 5, e1000567.	1.5	47
74	The Nucleosome Remodelling and Deacetylation complex suppresses transcriptional noise during lineage commitment. EMBO Journal, 2019, 38, .	3.5	45
75	In Vitro Targeting Reveals Intrinsic Histone Tail Specificity of the Sin3/Histone Deacetylase and N-CoR/SMRT Corepressor Complexes. Molecular and Cellular Biology, 2004, 24, 2364-2372.	1.1	43
76	A Dual Role for SAGA-Associated Factor 29 (SGF29) in ER Stress Survival by Coordination of Both Histone H3 Acetylation and Histone H3 Lysine-4 Trimethylation. PLoS ONE, 2013, 8, e70035.	1.1	43
77	EZH1/2 function mostly within canonical PRC2 and exhibit proliferation-dependent redundancy that shapes mutational signatures in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6075-6080.	3.3	42
78	Identification of Allobaculum mucolyticum as a novel human intestinal mucin degrader. Gut Microbes, 2021, 13, 1966278.	4.3	42
79	Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148. Nature Communications, 2017, 8, 15034.	5.8	40
80	Molecular characterization of Sin3 PAH-domain interactor specificity and identification of PAH partners. Nucleic Acids Research, 2006, 34, 3929-3937.	6.5	37
81	Recruitment of the Mammalian Histone-modifying EMSY Complex to Target Genes Is Regulated by ZNF131. Journal of Biological Chemistry, 2016, 291, 7313-7324.	1.6	35
82	The Tudor protein Veneno assembles the ping-pong amplification complex that produces viral piRNAs in <i>Aedes</i> mosquitoes. Nucleic Acids Research, 2019, 47, 2546-2559.	6.5	35
83	Induction and Suppression of NF-κB Signalling by a DNA Virus of <i>Drosophila</i> . Journal of Virology, 2019, 93, .	1.5	35
84	The HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia. Oncogene, 2018, 37, 2559-2572.	2.6	32
85	BRD9 binds cell type-specific chromatin regions regulating leukemic cell survival via STAT5 inhibition. Cell Death and Disease, 2019, 10, 338.	2.7	31
86	A CSB-PAF1C axis restores processive transcription elongation after DNA damage repair. Nature Communications, 2021, 12, 1342.	5.8	31
87	Off-the-shelf proximity biotinylation for interaction proteomics. Nature Communications, 2021, 12, 5015.	5.8	31
88	<scp>RNF</scp> 43 truncations trap <scp>CK</scp> 1 to drive nicheâ€independent selfâ€renewal in cancer. EMBO Journal, 2020, 39, e103932.	3.5	31
89	Integrated multi-omics reveal polycomb repressive complex 2 restricts human trophoblast induction. Nature Cell Biology, 2022, 24, 858-871.	4.6	30
90	Identifying Nuclear Protein–Protein Interactions Using GFP Affinity Purification and SILAC-Based Quantitative Mass Spectrometry. Methods in Molecular Biology, 2014, 1188, 207-226.	0.4	29

#	Article	IF	CITATIONS
91	Miniaturised interaction proteomics on a microfluidic platform with ultra-low input requirements. Nature Communications, 2019, 10, 1525.	5.8	29
92	SALL4 controls cell fate in response to DNA base composition. Molecular Cell, 2021, 81, 845-858.e8.	4.5	29
93	Specific Labeling of Stem Cell Activity in Human Colorectal Organoids Using an ASCL2-Responsive Minigene. Cell Reports, 2018, 22, 1600-1614.	2.9	28
94	Reading ADP-ribosylation signaling using chemical biology and interaction proteomics. Molecular Cell, 2021, 81, 4552-4567.e8.	4.5	28
95	TRiC controls transcription resumption after UV damage by regulating Cockayne syndrome protein A. Nature Communications, 2018, 9, 1040.	5.8	27
96	A Feed-Forward Repression Mechanism Anchors the Sin3/Histone Deacetylase and N-CoR/SMRT Corepressors on Chromatin. Molecular and Cellular Biology, 2006, 26, 5226-5236.	1.1	26
97	Chromosomal instability by mutations in the novel minor spliceosome component <i>CENATAC</i> . EMBO Journal, 2021, 40, e106536.	3.5	26
98	Purification and enrichment of specific chromatin loci. Nature Methods, 2020, 17, 380-389.	9.0	25
99	Hydroxychloroquine Inhibits the Trained Innate Immune Response to Interferons. Cell Reports Medicine, 2020, 1, 100146.	3.3	24
100	Quantitative proteomics: a tool to assess cell differentiation. Current Opinion in Cell Biology, 2009, 21, 761-766.	2.6	23
101	In Vivo Proximity Labeling for the Detection of Protein–Protein and Protein–RNA Interactions. Journal of Proteome Research, 2014, 13, 6135-6143.	1.8	22
102	<scp>ZBTB</scp> 2 reads unmethylated CpG island promoters and regulates embryonic stem cell differentiation. EMBO Reports, 2018, 19, .	2.0	22
103	NuRD-interacting protein ZFP296 regulates genome-wide NuRD localization and differentiation of mouse embryonic stem cells. Nature Communications, 2018, 9, 4588.	5.8	22
104	Myeloid Transforming Protein Evi1 Interacts with Methyl-CpG Binding Domain Protein 3 and Inhibits in Vitro Histone Deacetylation by Mbd3/Mi-2/NuRD. Biochemistry, 2008, 47, 6418-6426.	1.2	21
105	Identifying Specific Protein–DNA Interactions Using SILAC-Based Quantitative Proteomics. Methods in Molecular Biology, 2013, 977, 137-157.	0.4	21
106	Splicing and Chromatin Factors Jointly Regulate Epidermal Differentiation. Cell Reports, 2018, 25, 1292-1303.e5.	2.9	21
107	Molecular mechanisms of bleeding disorderassociated GFI1B ^{Q287*} mutation and its affected pathways in megakaryocytes and platelets. Haematologica, 2019, 104, 1460-1472.	1.7	21
108	Perspective on unraveling the versatility of â€~co-repressor' complexes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1051-1056.	0.9	20

#	Article	IF	CITATIONS
109	Phospho-H1 Decorates the Inter-chromatid Axis and Is Evicted along with Shugoshin by SET during Mitosis. Molecular Cell, 2017, 67, 579-593.e6.	4.5	20
110	Multivalent Engagement of TFIID to Nucleosomes. PLoS ONE, 2013, 8, e73495.	1.1	19
111	RNA-Centric Methods: Toward the Interactome of Specific RNA Transcripts. Trends in Biotechnology, 2021, 39, 890-900.	4.9	19
112	The translational landscape of ground state pluripotency. Nature Communications, 2020, 11, 1617.	5.8	18
113	Towards cracking the epigenetic code using a combination of highâ€throughput epigenomics and quantitative mass spectrometryâ€based proteomics. BioEssays, 2011, 33, 547-551.	1.2	17
114	Immuno-detection by sequencing enables large-scale high-dimensional phenotyping in cells. Nature Communications, 2018, 9, 2384.	5.8	17
115	There is another: H3K27me3-mediated genomic imprinting. Trends in Genetics, 2022, 38, 82-96.	2.9	16
116	Crossâ€linking mass spectrometry reveals the structural topology of peripheral NuRD subunits relative to the core complex. FEBS Journal, 2021, 288, 3231-3245.	2.2	15
117	Identifying Chromatin Readers Using a SILAC-Based Histone Peptide Pull-Down Approach. Methods in Enzymology, 2012, 512, 137-160.	0.4	14
118	Chromatin Proteomics to Study Epigenetics — Challenges and Opportunities. Molecular and Cellular Proteomics, 2021, 20, 100056.	2.5	14
119	PIWI proteomics identifies Atari and Pasilla as piRNA biogenesis factors in Aedes mosquitoes. Cell Reports, 2021, 35, 109073.	2.9	14
120	Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan. Development (Cambridge), 2019, 146, .	1.2	13
121	Locus-specific chromatin isolation. Nature Reviews Molecular Cell Biology, 2020, 21, 249-250.	16.1	13
122	Click-MS: Tagless Protein Enrichment Using Bioorthogonal Chemistry for Quantitative Proteomics. ACS Chemical Biology, 2016, 11, 3245-3250.	1.6	12
123	Differential regulation of lineage commitment in human and mouse primed pluripotent stem cells by the nucleosome remodelling and deacetylation complex. Stem Cell Research, 2020, 46, 101867.	0.3	11
124	Proteomic landscape of the primary somatosensory cortex upon sensory deprivation. GigaScience, 2017, 6, 1-10.	3.3	10
125	Retinoic acid signaling drives differentiation toward the absorptive lineage in colorectal cancer. IScience, 2021, 24, 103444.	1.9	10
126	SMYD3 Impedes Small Cell Lung Cancer Sensitivity to Alkylation Damage through RNF113A Methylation–Phosphorylation Cross-talk. Cancer Discovery, 2022, 12, 2158-2179.	7.7	10

#	Article	lF	CITATIONS
127	<i>SDHD</i> Promoter Mutations Ablate GABP Transcription Factor Binding in Melanoma. Cancer Research, 2017, 77, 1649-1661.	0.4	9
128	Dysregulated RASGRP1 expression through RUNX1 mediated transcription promotes autoimmunity. European Journal of Immunology, 2021, 51, 471-482.	1.6	9
129	Targeted discovery tools: proteomics and chromatin immunoprecipitation-on-chip. BJU International, 2005, 96, 16-22.	1.3	8
130	CBFβ-MYH11 interferes with megakaryocyte differentiation via modulating a gene program that includes GATA2 and KLF1. Blood Cancer Journal, 2019, 9, 33.	2.8	7
131	Identifying Readers for (hydroxy)methylated DNA Using Quantitative Interaction Proteomics: Advances and Challenges Ahead. Journal of Molecular Biology, 2020, 432, 1792-1800.	2.0	7
132	IRF8 is a transcriptional activator of CD37 expression in diffuse large B-cell lymphoma. Blood Advances, 2022, 6, 2254-2266.	2.5	7
133	UBE2O and USP7 coâ€regulate RECQL4 ubiquitinylation and homologous recombinationâ€mediated DNA repair. FASEB Journal, 2022, 36, e22112.	0.2	7
134	A Me6Age for pluripotency. Science, 2015, 347, 614-615.	6.0	6
135	PAQMAN: Protein-nucleic acid affinity quantification by MAss spectrometry in nuclear extracts. Methods, 2020, 184, 70-77.	1.9	6
136	A Novel Microscopy-Based High-Throughput Screening Method to Identify Proteins That Regulate Global Histone Modification Levels. Journal of Biomolecular Screening, 2014, 19, 287-296.	2.6	5
137	Mass Spectrometry-Based Absolute Quantification of Single Xenopus Embryo Proteomes. Cold Spring Harbor Protocols, 2019, 2019, pdb.prot098376.	0.2	5
138	The Pluripotency Regulator PRDM14 Requires Hematopoietic Regulator CBFA2T3 to Initiate Leukemia in Mice. Molecular Cancer Research, 2019, 17, 1468-1479.	1.5	5
139	Androgen receptor signalling confers clonogenic and migratory advantages in urothelial cell carcinoma of the bladder. Molecular Oncology, 2021, 15, 1882-1900.	2.1	5
140	SNX27-driven membrane localisation of OTULIN antagonises linear ubiquitination and NF-κB signalling activation. Cell and Bioscience, 2021, 11, 146.	2.1	4
141	An in vitro assay to study the recruitment and substrate specificity of chromatin modifying enzymes. Biological Procedures Online, 2004, 6, 157-162.	1.4	3
142	Research Highlights: Highlights from the latest articles on epigenetics in tumorigenesis. Epigenomics, 2012, 4, 367-368.	1.0	2
143	OUP accepted manuscript. Human Molecular Genetics, 2021, , .	1.4	2
144	Exploring Chromatin Readers Using High-Accuracy Quantitative Mass Spectrometry-Based Proteomics. , 2014, , 133-148.		2

#	Article	IF	CITATIONS
145	Making the most of methylation. ELife, 2013, 2, e01387.	2.8	2
146	In need of good neighbours: transcription factors require local <scp>DNA</scp> hypomethylation for target binding. EMBO Journal, 2016, 35, 374-375.	3.5	1
147	Bifunctional protein PCBD2 operates as a coâ€factor for hepatocyte nuclear factor 1β and modulates gene transcription. FASEB Journal, 2021, 35, e21366.	0.2	1
148	CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia. Experimental Hematology, 2013, 41, S50.	0.2	0
149	Identifying Protein–(Hydroxy)Methylated DNA Using Quantitative Interaction Proteomics. Methods in Molecular Biology, 2021, 2272, 209-224.	0.4	0
150	Characterization of a genomic region 8Âkb downstream of GFI1B associated with myeloproliferative neoplasms. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166259.	1.8	0
151	Yeast Aging Proteome Unveiled a Novel Aging Regulation Pathway Mediated by the Chromatin Remodeling Complex ISW2, FASEB Journal, 2012, 26, 965,2,	0.2	0