
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7580953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Singlet Oxygen Activatable Prodrugs of Paclitaxel, SNâ€38, MMC and CA4: Nonmitochondriaâ€Targeted Prodrugs ^{â€} . Photochemistry and Photobiology, 2022, 98, 389-399.	1.3	3
2	Editorial: Special Issue on Emerging Developments in Photocaging. Photochemistry and Photobiology, 2022, 98, 287-287.	1.3	0
3	Crystal structures of glutathione- and inhibitor-bound humanÂGGT1: critical interactions within the cysteinylglycine binding site. Journal of Biological Chemistry, 2021, 296, 100066.	1.6	7
4	Local and Systemic Antitumor Effects of Photoâ€activatable Paclitaxel Prodrug on Rat Breast Tumor Models. Photochemistry and Photobiology, 2020, 96, 668-679.	1.3	2
5	PBPK modeling-based optimization of site-specific chemo-photodynamic therapy with far-red light-activatable paclitaxel prodrug. Journal of Controlled Release, 2019, 308, 86-97.	4.8	12
6	Singlet oxygen-activatable Paclitaxel prodrugs via intermolecular activation for combined PDT and chemotherapy. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1537-1540.	1.0	13
7	Development of Prodrugs for PDT-Based Combination Therapy Using a Singlet-Oxygen-Sensitive Linker and Quantitative Systems Pharmacology. Journal of Clinical Medicine, 2019, 8, 2198.	1.0	14
8	Efficient activation of a visible light-activatable CA4 prodrug through intermolecular photo-unclick chemistry in mitochondria. Chemical Communications, 2017, 53, 1884-1887.	2.2	21
9	Folate-PEG Conjugates of a Far-Red Light-Activatable Paclitaxel Prodrug to Improve Selectivity toward Folate Receptor-Positive Cancer Cells. ACS Omega, 2017, 2, 6349-6360.	1.6	41
10	Quantitative modeling of the dynamics and intracellular trafficking of far-red light-activatable prodrugs: implications in stimuli-responsive drug delivery system. Journal of Pharmacokinetics and Pharmacodynamics, 2017, 44, 521-536.	0.8	9
11	MP61-09 EARLY DEVELOPMENT OF INTRAVESICAL REFLECTANCE SPECTROSCOPY FOR BLADDER TUMOR DETECTION AND STAGING. Journal of Urology, 2016, 195, .	0.2	0
12	Anticancer drug released from near IR-activated prodrug overcomes spatiotemporal limits of singlet oxygen. Bioorganic and Medicinal Chemistry, 2016, 24, 1540-1549.	1.4	29
13	Far-Red Light-Activatable Prodrug of Paclitaxel for the Combined Effects of Photodynamic Therapy and Site-Specific Paclitaxel Chemotherapy. Journal of Medicinal Chemistry, 2016, 59, 3204-3214.	2.9	103
14	Photodynamic therapy via FRET following bioorthogonal click reaction in cancer cells. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 145-148.	1.0	11
15	Abstract 1671: Local release of combretastatin A-4 from NIR-light activatable prodrugs overcomes areal and temporal limitations of photodynamic therapy. , 2016, , .		0
16	Abstract 1361: Progress in light activatable prodrug for the combinational treatment of PDT and site-specific chemotherapy: paclitaxel prodrugs. , 2016, , .		0
17	Identification of novel drugs to target dormant micrometastases. BMC Cancer, 2015, 15, 404.	1.1	11
18	Dual Functioning Thienoâ€Pyrrole Fused BODIPY Dyes for NIR Optical Imaging and Photodynamic Therapy: Singlet Oxygen Generation without Heavy Halogen Atom Assistance. Chemistry - an Asian Journal, 2015, 10, 1335-1343.	1.7	80

YOUNGJAE YOU

#	Article	IF	CITATIONS
19	Asymmetric ZnPc–TEG photosensitizers: the effect of Pc substitution on phototoxicity. Tetrahedron Letters, 2015, 56, 6236-6239.	0.7	3
20	Abstract 4394: Selective accumulation and specific tumor damage by folate receptor-targeted CA-4 prodrug as part of a combination of photodynamic therapy and site-specific chemotherapy. , 2015, , .		0
21	Folate Receptor-Mediated Enhanced and Specific Delivery of Far-Red Light-Activatable Prodrugs of Combretastatin A-4 to FR-Positive Tumor. Bioconjugate Chemistry, 2014, 25, 2175-2188.	1.8	65
22	Thieno-Pyrrole-Fused 4,4-Difluoro-4-bora-3a,4a-diaza- <i>s</i> -indacene–Fullerene Dyads: Utilization of Near-Infrared Sensitizers for Ultrafast Charge Separation in Donor–Acceptor Systems. Journal of the American Chemical Society, 2014, 136, 7571-7574.	6.6	60
23	Asymmetric ZnPc–rhodamine B conjugates for mitochondrial targeted photodynamic therapy. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4496-4500.	1.0	12
24	Far-Red Light Activatable, Multifunctional Prodrug for Fluorescence Optical Imaging and Combinational Treatment. Journal of Medicinal Chemistry, 2014, 57, 3401-3409.	2.9	73
25	Abstract 4919: Visible/NIR-activatable prodrug strategy for treating local tumors by the combination of photodynamic therapy and local chemotherapy. Cancer Research, 2014, 74, 4919-4919.	0.4	1
26	Thieno–Pyrroleâ€Fused BODIPY Intermediate as a Platform to Multifunctional NIR Agents. Chemistry - an Asian Journal, 2013, 8, 3123-3132.	1.7	46
27	Synthesis and in vitro biological evaluation of lipophilic cation conjugated photosensitizers for targeting mitochondria. Bioorganic and Medicinal Chemistry, 2013, 21, 379-387.	1.4	57
28	Visible Light Controlled Release of Anticancer Drug through Double Activation of Prodrug. ACS Medicinal Chemistry Letters, 2013, 4, 124-127.	1.3	79
29	Enhanced Singlet Oxygen Generation from a Porphyrin–Rhodamine B Dyad by Twoâ€Photon Excitation through Resonance Energy Transfer. Photochemistry and Photobiology, 2013, 89, 841-848.	1.3	10
30	Site-Specific and Far-Red-Light-Activatable Prodrug of Combretastatin A-4 Using Photo-Unclick Chemistry. Journal of Medicinal Chemistry, 2013, 56, 3936-3942.	2.9	82
31	Emerging Strategies for Controlling Drug Release by Using Visible/Near IR Light. , 2013, 03, .		16
32	Click and photo-unclick chemistry of aminoacrylate for visible light-triggered drug release. Chemical Communications, 2012, 48, 6517.	2.2	86
33	Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Advances, 2012, 2, 11169.	1.7	545
34	Synthesis and Singlet Oxygen Reactivity of 1,2â€Diaryloxyethenes and Selected Sulfur and Nitrogen Analogs. Photochemistry and Photobiology, 2012, 88, 753-759.	1.3	14
35	Abstract 3466: Mitochondrial targeting photosensitizer-lipophilic cation conjugates for photodynamic therapy. , 2012, , .		0
36	<i>In Vitro</i> and <i>In Vivo</i> Photodynamic Activity of Coreâ€modified Porphyrin IY69 Using 690 nm Diode Laser. Photochemistry and Photobiology, 2011, 87, 1468-1473.	1.3	3

#	Article	IF	CITATIONS
37	New pyran dyes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 224, 116-122.	2.0	45
38	Singlet Oxygen Generation by Novel NIR BODIPY Dyes. Organic Letters, 2011, 13, 3884-3887.	2.4	221
39	Density functional theory as a guide for the design of pyran dyes for dye-sensitized solar cells. Monatshefte Für Chemie, 2011, 142, 45-52.	0.9	6
40	Low energy light-triggered oxidative cleavage of olefins. Tetrahedron Letters, 2009, 50, 1041-1044.	0.7	61
41	Evaluation of delocalized lipophilic cationic dyes as delivery vehicles for photosensitizers to mitochondria. Bioorganic and Medicinal Chemistry, 2009, 17, 6631-6640.	1.4	47
42	Structural effects of core-modified porphyrins in dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2009, 13, 903-909.	0.4	26
43	Conjugate systems using delocalized cationic dyes as a carrier of photosensitizers to mitochondria. Proceedings of SPIE, 2009, , .	0.8	0
44	Core-modified porphyrins. Part 6: Effects of lipophilicity and core structures on physicochemical and biological properties in vitro. Bioorganic and Medicinal Chemistry, 2008, 16, 3171-3183.	1.4	27
45	Dithiaporphyrin Derivatives as Photosensitizers in Membranes and Cells. Journal of Physical Chemistry B, 2008, 112, 3268-3276.	1.2	28
46	Polymer photovoltaics from all-water-solution processing. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	1
47	A core-modified porphyrin as a sensitizer for dye-sensitized solar cells. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	0
48	2-Cyano-lup-1-en-3-oxo-20-oic acid, a cyano derivative of betulinic acid, activates peroxisome proliferator-activated receptor in colon and pancreatic cancer cells. Carcinogenesis, 2007, 28, 2337-2346.	1.3	49
49	Synthesis, spectral data, and crystal structure of two novel substitution patterns in dithiaporphyrins. Journal of Porphyrins and Phthalocyanines, 2007, 11, 1-8.	0.4	5
50	Stimulation of P-Glycoprotein ATPase by Analogues of Tetramethylrosamine:Â Coupling of Drug Binding at the "R―Site to the ATP Hydrolysis Transition Stateâ€. Biochemistry, 2006, 45, 8034-8047.	1.2	30
51	Phototoxicity of a core-modified porphyrin and induction of apoptosis. Journal of Photochemistry and Photobiology B: Biology, 2006, 85, 155-162.	1.7	10
52	Core-modified porphyrins. Part 4: Steric effects on photophysical and biological properties in vitro. Bioorganic and Medicinal Chemistry, 2005, 13, 2235-2251.	1.4	88
53	Structure–activity studies of uptake and phototoxicity with heavy-chalcogen analogues of tetramethylrosamine in vitro in chemosensitive and multidrug-resistant cells. Bioorganic and Medicinal Chemistry, 2005, 13, 6394-6403.	1.4	24
54	Core-modified porphyrins. Part 5: Electronic effects on photophysical and biological properties in vitro. Bioorganic and Medicinal Chemistry, 2005, 13, 5968-5980.	1.4	49

#	Article	IF	CITATIONS
55	Podophyllotoxin Derivatives: Current Synthetic Approaches for New Anticancer Agents. Current Pharmaceutical Design, 2005, 11, 1695-1717.	0.9	198
56	New constituents fromCrinum latifoliumwith inhibitory effects against tube-like formation of human umbilical venous endothelial cells. Natural Product Research, 2004, 18, 485-491.	1.0	14
57	Synthesis and cytotoxicity of 2,5-dihydroxychalcones and related compounds. Archives of Pharmacal Research, 2004, 27, 581-588.	2.7	15
58	Alkyl and carboxylalkyl esters of 4′-demethyl-4-deoxypodophyllotoxin: synthesis, cytotoxic, and antitumor activity. European Journal of Medicinal Chemistry, 2004, 39, 189-193.	2.6	29
59	Cytotoxic 2′,5′-dihydroxychalcones with unexpected antiangiogenic activity. European Journal of Medicinal Chemistry, 2003, 38, 179-187.	2.6	75
60	Antitumor activity of unsaturated fatty acid esters of 4′-demethyldeoxypodophyllotoxin. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2629-2632.	1.0	26
61	Synthesis and cytotoxic activity of a-ring modified betulinic acid derivatives. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3137-3140.	1.0	62
62	Water soluble prodrugs of the antitumor agent 3-[(3-amino-4-methoxy)phenyl]-2-(3,4,5-trimethoxyphenyl)cyclopent-2-ene-1-one. Bioorganic and Medicinal Chemistry, 2003, 11, 1021-1029.	1.4	26
63	Antiangiogenic activity of lupeol from Bombax ceiba. Phytotherapy Research, 2003, 17, 341-344.	2.8	99
64	Inhibitory effect ofAdonis amurensis components on tube-like formation of human umbilical venous cells. Phytotherapy Research, 2003, 17, 568-570.	2.8	10
65	Water Soluble, Core-Modified Porphyrins. 3. Synthesis, Photophysical Properties, and in Vitro Studies of Photosensitization, Uptake, and Localization with Carboxylic Acid-Substituted Derivatives. Journal of Medicinal Chemistry, 2003, 46, 3734-3747.	2.9	85
66	Mechanistic Studies of the Tellurium(II)/Tellurium(IV) Redox Cycle in Thiol Peroxidase-like Reactions of Diorganotellurides in Methanol. Journal of the American Chemical Society, 2003, 125, 4918-4927.	6.6	99
67	Dendrimeric Organotelluride Catalysts for the Activation of Hydrogen Peroxide. Improved Catalytic Activity through Statistical and Stereoelectronic Effects. Organometallics, 2003, 22, 2883-2890.	1.1	21
68	Deoxypodophyllotoxin; The Cytotoxic and Antiangiogenic Component from Pulsatilla koreana. Planta Medica, 2002, 68, 271-274.	0.7	80
69	21-Telluraporphyrins. 2. Catalysts for Bromination Reactions with Hydrogen Peroxide and Sodium Bromide. Organometallics, 2002, 21, 4546-4551.	1.1	45
70	2,3-Dibenzylbutyrolactones and 1,2,3,4-tetrahydro-2-naphthoic acid γnes: structure and activity relationship in cytotoxic activity. Archives of Pharmacal Research, 2002, 25, 240-249.	2.7	2
71	Synthesis and cytotoxicity of some rigid derivatives of methyl 2,5-Dihydroxycinnamate. Archives of Pharmacal Research, 2002, 25, 590-599.	2.7	7
72	Synthesis, cytotoxicity and antitumor activity of 2,3-Diarylcy-clopent-2-ene-1-ones. Archives of Pharmacal Research, 2002, 25, 600-607.	2.7	10

#	Article	IF	CITATIONS
73	Antiangiogenic activity ofBupleurum longiradiatum on human umbilical venous endothelial cells. Archives of Pharmacal Research, 2002, 25, 640-642.	2.7	9
74	Synthesis and Cytotoxicity of 3,4-Diaryl-2(5H)-furanones. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 719-722.	1.0	84
75	Preliminary Structure–Antiangiogenic Activity Relationships of 4-Senecioyloxymethyl-6,7-dimethoxycoumarin. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2345-2348.	1.0	32
76	Prodrugs of 4′-demethyl-4-deoxypodophyllotoxin: synthesis and evaluation of the antitumor activity. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3435-3438.	1.0	28
77	Synthesis and anti-tumor activity of novel combretastatins: combretocyclopentenones and related analogues. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1955-1958.	1.0	54
78	Naphthazarin derivatives (VII): Antitumor action against ICR mice bearing ascitic S-180 cells. Archives of Pharmacal Research, 2001, 24, 35-38.	2.7	7
79	Esters of chlorambucil with 2-substituted 1,4-dihydroxy-9,10-anthraquinones as multifunctional anticancer agents. European Journal of Medicinal Chemistry, 2001, 36, 361-366.	2.6	10
80	Syntheses of Certain 3-Aryl-2-propenoates and Evaluation of their Cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1173-1176.	1.0	32
81	Esters of 2-(1-hydroxyalkyl)-1,4-dihydroxy-9,10-anthraquinones with melphalan as multifunctional anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1473-1476.	1.0	12
82	Combretoxazolones: synthesis, cytotoxicity and antitumor activity. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 3073-3076.	1.0	66
83	Naphthazarin derivatives (VIII): Synthesis, inhibitory effect on DNA topoisomerase-I, and antiproliferative activity of 6-(1-acyloxyalkyl)-5,8-dimethoxy-1,4-naphthoquinones. Archiv Der Pharmazie, 2001, 334, 318-322.	2.1	9
84	Naphthazarin Derivatives (VI): Synthesis, Inhibitory Effect on DNA Topoisomerase-I and Antiproliferative Activity of 2- or 6-(1-Oxyiminoalkyl)-5,8-dimethoxy-1,4-naphthoquinones. Archiv Der Pharmazie, 2000, 333, 87-92.	2.1	47
85	(E)-6-(1-alkyloxyiminoalkyl)-5,8-dimethoxy-1,4-naphthoquinones: synthesis, cytotoxic activity and antitumor activity. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2301-2303.	1.0	22
86	Naphthazarin derivatives (IV): synthesis, inhibition of DNA topoisomerase I and cytotoxicity of 2- or 6-acyl-5,8-dimethoxy-1,4-naphthoquinones. European Journal of Medicinal Chemistry, 2000, 35, 291-298.	2.6	45
87	Naphthazarin derivatives (II)1: Formation of glutathione conjugate, inhibition of DNA topoisomerase-I and cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2407-2412.	1.0	28
88	Glutathione conjugates of 2- or 6-substituted 5,8-dimethoxy-1,4-naphthoquinone derivatives: Formation and structure. Archives of Pharmacal Research, 1999, 22, 384-390.	2.7	3
89	Naphthazarin derivatives: Synthesis, cytotoxic mechanism and evaluation of antitumor activity. Archives of Pharmacal Research, 1998, 21, 595-598.	2.7	29
90	6-(1-Alkenoyloxyalkyl)-5,8-dimethoxy-1,4-naphthoquinone derivatives: Synthesis and evaluation of antitumor activity. Archives of Pharmacal Research, 1998, 21, 738-743.	2.7	11