
## Jun Zhu

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7580627/publications.pdf Version: 2024-02-01



Іны 7нн

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 2013, 45, 580-585.                                                                                                                                 | 9.4  | 6,815     |
| 2  | The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science, 2015, 348, 648-660.                                                                                          | 6.0  | 4,659     |
| 3  | Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer's Disease.<br>Cell, 2013, 153, 707-720.                                                                                  | 13.5 | 1,505     |
| 4  | Genetics of gene expression and its effect on disease. Nature, 2008, 452, 423-428.                                                                                                                                 | 13.7 | 1,209     |
| 5  | An integrative genomics approach to infer causal associations between gene expression and disease.<br>Nature Genetics, 2005, 37, 710-717.                                                                          | 9.4  | 967       |
| 6  | Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nature<br>Neuroscience, 2016, 19, 1442-1453.                                                                                     | 7.1  | 952       |
| 7  | Mapping the Genetic Architecture of Gene Expression in Human Liver. PLoS Biology, 2008, 6, e107.                                                                                                                   | 2.6  | 872       |
| 8  | Variations in DNA elucidate molecular networks that cause disease. Nature, 2008, 452, 429-435.                                                                                                                     | 13.7 | 840       |
| 9  | Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genetics, 2008, 40, 854-861.                                                                        | 9.4  | 515       |
| 10 | Co-regulatory networks of human serum proteins link genetics to disease. Science, 2018, 361, 769-773.                                                                                                              | 6.0  | 375       |
| 11 | Reduced Retinoic Acid-Sensitivities of Nuclear Receptor Corepressor Binding to PML- and PLZF-RARα<br>Underlie Molecular Pathogenesis and Treatment of Acute Promyelocytic Leukemia. Blood, 1998, 91,<br>2634-2642. | 0.6  | 291       |
| 12 | Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks.<br>Nature Genetics, 2009, 41, 415-423.                                                                        | 9.4  | 257       |
| 13 | Epigenome-wide differences in pathology-free regions of multiple sclerosis–affected brains. Nature<br>Neuroscience, 2014, 17, 121-130.                                                                             | 7.1  | 239       |
| 14 | EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nature<br>Communications, 2018, 9, 3503.                                                                             | 5.8  | 224       |
| 15 | Disentangling molecular relationships with a causal inference test. BMC Genetics, 2009, 10, 23.                                                                                                                    | 2.7  | 199       |
| 16 | A functional genomics predictive network model identifies regulators of inflammatory bowel disease.<br>Nature Genetics, 2017, 49, 1437-1449.                                                                       | 9.4  | 199       |
| 17 | Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease. PLoS Genetics, 2014, 10, e1004502.                                                                            | 1.5  | 192       |
| 18 | Increasing the Power to Detect Causal Associations by Combining Genotypic and Expression Data in Segregating Populations. PLoS Computational Biology, 2007, 3, e69.                                                | 1.5  | 188       |

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Molecular Systems Biology, 2014, 10, 743.                                              | 3.2  | 182       |
| 20 | Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Scientific Reports, 2015, 5, 15145.                                      | 1.6  | 180       |
| 21 | Molecular Portraits of Epithelial, Mesenchymal, and Hybrid States in Lung Adenocarcinoma and Their<br>Relevance to Survival. Cancer Research, 2015, 75, 1789-1800.                           | 0.4  | 179       |
| 22 | Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain<br>Cancer. Cell, 2020, 183, 1962-1985.e31.                                                      | 13.5 | 177       |
| 23 | Stitching together Multiple Data Dimensions Reveals Interacting Metabolomic and Transcriptomic Networks That Modulate Cell Regulation. PLoS Biology, 2012, 10, e1001301.                     | 2.6  | 173       |
| 24 | A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort.<br>Genome Research, 2011, 21, 1008-1016.                                               | 2.4  | 161       |
| 25 | Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. Cell Reports, 2015, 13, 2425-2439.                                        | 2.9  | 146       |
| 26 | Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease. Genome<br>Biology, 2009, 10, R55.                                                                  | 13.9 | 137       |
| 27 | Systems analysis of eleven rodent disease models reveals an inflammatome signature and key drivers.<br>Molecular Systems Biology, 2012, 8, 594.                                              | 3.2  | 134       |
| 28 | Comparison of glioblastoma (GBM) molecular classification methods. Seminars in Cancer Biology, 2018, 53, 201-211.                                                                            | 4.3  | 125       |
| 29 | Gut microbiota density influences host physiology and is shaped by host and microbial factors. ELife, 2019, 8, .                                                                             | 2.8  | 118       |
| 30 | Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes. BMC Bioinformatics, 2012, 13, 182.                                                | 1.2  | 110       |
| 31 | Transformative Network Modeling of Multi-omics Data Reveals Detailed Circuits, Key Regulators, and<br>Potential Therapeutics for Alzheimer's Disease. Neuron, 2021, 109, 257-272.e14.        | 3.8  | 108       |
| 32 | Integrative network analysis reveals molecular mechanisms of blood pressure regulation. Molecular<br>Systems Biology, 2015, 11, 799.                                                         | 3.2  | 102       |
| 33 | Multiscale network modeling of oligodendrocytes reveals molecular components of myelin<br>dysregulation in Alzheimer's disease. Molecular Neurodegeneration, 2017, 12, 82.                   | 4.4  | 100       |
| 34 | Intestinal Inflammation Modulates the Expression of ACE2 and TMPRSS2 and Potentially Overlaps With the Pathogenesis of SARS-CoV-2–related Disease. Gastroenterology, 2021, 160, 287-301.e20. | 0.6  | 98        |
| 35 | Fibroblast Growth Factor Receptor 3 Alterations and Response to PD-1/PD-L1 Blockade in Patients with<br>Metastatic Urothelial Cancer. European Urology, 2019, 76, 599-603.                   | 0.9  | 95        |
| 36 | Multiscale causal networks identify VGF as a key regulator of Alzheimer's disease. Nature<br>Communications, 2020, 11, 3942.                                                                 | 5.8  | 94        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes. Journal of Neurochemistry, 2006, 97, 50-62.             | 2.1 | 89        |
| 38 | Variants in TRIM22 That Affect NOD2 Signaling Are Associated With Very-Early-Onset Inflammatory<br>Bowel Disease. Gastroenterology, 2016, 150, 1196-1207.                                                    | 0.6 | 88        |
| 39 | Integrative Analysis of DNA Methylation and Gene Expression Data Identifies EPAS1 as a Key Regulator of COPD. PLoS Genetics, 2015, 11, e1004898.                                                             | 1.5 | 82        |
| 40 | Functional Characterization of DNA Methylation in the Oligodendrocyte Lineage. Cell Reports, 2016, 15, 748-760.                                                                                              | 2.9 | 81        |
| 41 | Construction of regulatory networks using expression time-series data of a genotyped population.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19436-19441. | 3.3 | 80        |
| 42 | A Next Generation Multiscale View of Inborn Errors of Metabolism. Cell Metabolism, 2016, 23, 13-26.                                                                                                          | 7.2 | 79        |
| 43 | Cancer-Specific Requirement for BUB1B/BUBR1 in Human Brain Tumor Isolates and Genetically Transformed Cells. Cancer Discovery, 2013, 3, 198-211.                                                             | 7.7 | 78        |
| 44 | Integrative Analysis of a Cross-Loci Regulation Network Identifies App as a Gene Regulating Insulin<br>Secretion from Pancreatic Islets. PLoS Genetics, 2012, 8, e1003107.                                   | 1.5 | 76        |
| 45 | Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions. Scientific Data, 2020, 7, 340.                                                                   | 2.4 | 75        |
| 46 | Development and clinical application of an integrative genomic approach to personalized cancer therapy. Genome Medicine, 2016, 8, 62.                                                                        | 3.6 | 71        |
| 47 | Urachal Carcinoma Shares Genomic Alterations with Colorectal Carcinoma and May Respond to Epidermal Growth Factor Inhibition. European Urology, 2016, 70, 771-775.                                           | 0.9 | 69        |
| 48 | Comprehensive innate immune profiling of chikungunya virus infection in pediatric cases. Molecular<br>Systems Biology, 2018, 14, e7862.                                                                      | 3.2 | 66        |
| 49 | Inferring causal genomic alterations in breast cancer using gene expression data. BMC Systems<br>Biology, 2011, 5, 121.                                                                                      | 3.0 | 64        |
| 50 | A pilot systematic genomic comparison of recurrence risks of hepatitis B virus-associated<br>hepatocellular carcinoma with low- and high-degree liver fibrosis. BMC Medicine, 2017, 15, 214.                 | 2.3 | 64        |
| 51 | A Bayesian Partition Method for Detecting Pleiotropic and Epistatic eQTL Modules. PLoS<br>Computational Biology, 2010, 6, e1000642.                                                                          | 1.5 | 61        |
| 52 | Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.<br>EBioMedicine, 2016, 7, 157-166.                                                                                  | 2.7 | 59        |
| 53 | Characterizing Dynamic Changes in the Human Blood Transcriptional Network. PLoS Computational Biology, 2010, 6, e1000671.                                                                                    | 1.5 | 54        |
| 54 | Integrating siRNA and protein–protein interaction data to identify an expanded insulin signaling<br>network. Genome Research, 2009, 19, 1057-1067.                                                           | 2.4 | 53        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Human geroprotector discovery by targeting the converging subnetworks of aging and age-related diseases. GeroScience, 2020, 42, 353-372.                                                                               | 2.1 | 50        |
| 56 | Integrating external biological knowledge in the construction of regulatory networks from time-series expression data. BMC Systems Biology, 2012, 6, 101.                                                              | 3.0 | 49        |
| 57 | Identification and validation of genes affecting aortic lesions in mice. Journal of Clinical Investigation, 2010, 120, 2414-2422.                                                                                      | 3.9 | 49        |
| 58 | Meta-analysis of Inter-species Liver Co-expression Networks Elucidates Traits Associated with Common<br>Human Diseases. PLoS Computational Biology, 2009, 5, e1000616.                                                 | 1.5 | 47        |
| 59 | The effect of food intake on gene expression in human peripheral blood. Human Molecular Genetics, 2010, 19, 159-169.                                                                                                   | 1.4 | 44        |
| 60 | Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nature Communications, 2018, 9, 2292.                                                      | 5.8 | 44        |
| 61 | Myeloid Cell–associated Resistance to PD-1/PD-L1 Blockade in Urothelial Cancer Revealed Through<br>Bulk and Single-cell RNA Sequencing. Clinical Cancer Research, 2021, 27, 4287-4300.                                 | 3.2 | 42        |
| 62 | Downregulation of exhausted cytotoxic T cells in gene expression networks of multisystem inflammatory syndrome in children. Nature Communications, 2021, 12, 4854.                                                     | 5.8 | 42        |
| 63 | Discover the network mechanisms underlying the connections between aging and age-related diseases. Scientific Reports, 2016, 6, 32566.                                                                                 | 1.6 | 40        |
| 64 | miR-500a-5p regulates oxidative stress response genes in breast cancer and predicts cancer survival.<br>Scientific Reports, 2017, 7, 15966.                                                                            | 1.6 | 40        |
| 65 | Prototypical oncogene family Myc defines unappreciated distinct lineage states of small cell lung cancer. Science Advances, 2021, 7, .                                                                                 | 4.7 | 40        |
| 66 | Modeling Causality for Pairs of Phenotypes in System Genetics. Genetics, 2013, 193, 1003-1013.                                                                                                                         | 1.2 | 38        |
| 67 | Sensitivity to <i>BUB1B</i> Inhibition Defines an Alternative Classification of Glioblastoma. Cancer<br>Research, 2017, 77, 5518-5529.                                                                                 | 0.4 | 38        |
| 68 | Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine<br>mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>E11128-E11137. | 3.3 | 38        |
| 69 | KRAS as a predictor of poor prognosis and benefit from postoperative FOLFOX chemotherapy in patients with stage II and III colorectal cancer. Molecular Oncology, 2015, 9, 1341-1347.                                  | 2.1 | 37        |
| 70 | Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy. PLoS ONE, 2017, 12, e0172884.                                                                  | 1.1 | 37        |
| 71 | MODMatcher: Multi-Omics Data Matcher for Integrative Genomic Analysis. PLoS Computational<br>Biology, 2014, 10, e1003790.                                                                                              | 1.5 | 35        |
| 72 | An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease. Nature Communications, 2021, 12, 547.                                                                  | 5.8 | 35        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | EPRS is a critical regulator of cell proliferation and estrogen signaling in ER+ breast cancer.<br>Oncotarget, 2016, 7, 69592-69605.                                                                                     | 0.8 | 35        |
| 74 | Disease-specific classification using deconvoluted whole blood gene expression. Scientific Reports, 2016, 6, 32976.                                                                                                      | 1.6 | 34        |
| 75 | A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles. Genome Medicine, 2020, 12, 24.                                                           | 3.6 | 34        |
| 76 | Inferred miRNA activity identifies miRNA-mediated regulatory networks underlying multiple cancers.<br>Bioinformatics, 2016, 32, 96-105.                                                                                  | 1.8 | 31        |
| 77 | A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits. BMC<br>Genomics, 2015, 16, 88.                                                                                              | 1.2 | 28        |
| 78 | DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet. Molecular Metabolism, 2017, 6, 327-339.                                   | 3.0 | 27        |
| 79 | Viral integration drives multifocal HCC during the occult HBV infection. Journal of Experimental and<br>Clinical Cancer Research, 2019, 38, 261.                                                                         | 3.5 | 27        |
| 80 | Targeting the SIN3A-PF1 interaction inhibits epithelial to mesenchymal transition and maintenance of a stem cell phenotype in triple negative breast cancer. Oncotarget, 2015, 6, 34087-34105.                           | 0.8 | 26        |
| 81 | Integrative Analysis of the Inflammatory Bowel Disease Serum Metabolome Improves Our<br>Understanding of Genetic Etiology and Points to Novel Putative Therapeutic Targets.<br>Gastroenterology, 2022, 162, 828-843.e11. | 0.6 | 26        |
| 82 | Inter-tissue coexpression network analysis reveals DPP4 as an important gene in heart to blood communication. Genome Medicine, 2016, 8, 15.                                                                              | 3.6 | 24        |
| 83 | Epigenomic Profiling Discovers Trans-lineage SOX2 Partnerships Driving Tumor Heterogeneity in Lung<br>Squamous Cell Carcinoma. Cancer Research, 2019, 79, 6084-6100.                                                     | 0.4 | 24        |
| 84 | A new method for constructing tumor specific gene co-expression networks based on samples with tumor purity heterogeneity. Bioinformatics, 2018, 34, i528-i536.                                                          | 1.8 | 23        |
| 85 | A Network Analysis of Multiple Myeloma Related Gene Signatures. Cancers, 2019, 11, 1452.                                                                                                                                 | 1.7 | 23        |
| 86 | Transcriptome analysis reveals the difference between "healthy―and "common―aging and their<br>connection with ageâ€related diseases. Aging Cell, 2020, 19, e13121.                                                       | 3.0 | 22        |
| 87 | Novel Predictors of Breast Cancer Survival Derived from miRNA Activity Analysis. Clinical Cancer<br>Research, 2018, 24, 581-591.                                                                                         | 3.2 | 21        |
| 88 | Prostate Cancer in World Trade Center Responders Demonstrates Evidence of an Inflammatory<br>Cascade. Molecular Cancer Research, 2019, 17, 1605-1612.                                                                    | 1.5 | 21        |
| 89 | Treatment-associated <i>TP53</i> DNA-binding domain missense mutations in the pathogenesis of secondary gliosarcoma. Oncotarget, 2018, 9, 2603-2621.                                                                     | 0.8 | 20        |
| 90 | Identification of microR-106b as a prognostic biomarker of p53-like bladder cancers by ActMiR.<br>Oncogene, 2018, 37, 5858-5872.                                                                                         | 2.6 | 20        |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Network-based differential gene expression analysis suggests cell cycle related genes regulated by<br>E2F1 underlie the molecular difference between smoker and non-smoker lung adenocarcinoma. BMC<br>Bioinformatics, 2013, 14, 365. | 1.2 | 19        |
| 92  | A next generation sequencing based approach to identify extracellular vesicle mediated mRNA transfers between cells. BMC Genomics, 2017, 18, 987.                                                                                     | 1.2 | 19        |
| 93  | Lessons learned from expanded reproductive carrier screening in selfâ€reported Ashkenazi, Sephardi,<br>and Mizrahi Jewish patients. Molecular Genetics & Genomic Medicine, 2020, 8, e1053.                                            | 0.6 | 16        |
| 94  | Integrative network analysis of early-stage lung adenocarcinoma identifies aurora kinase inhibition as interceptor of invasion and progression. Nature Communications, 2022, 13, 1592.                                                | 5.8 | 16        |
| 95  | A robust blood gene expression-based prognostic model for castration-resistant prostate cancer.<br>BMC Medicine, 2015, 13, 201.                                                                                                       | 2.3 | 14        |
| 96  | EXPLORING THE REPRODUCIBILITY OF PROBABILISTIC CAUSAL MOLECULAR NETWORK MODELS. , 2017, 22, 120-131.                                                                                                                                  |     | 14        |
| 97  | Molecular Characterization of Limited Ulcerative Colitis Reveals Novel Biology and Predictors of Disease Extension. Gastroenterology, 2021, 161, 1953-1968.e15.                                                                       | 0.6 | 14        |
| 98  | Impact of non-neoplastic vs intratumoural hepatitis B viral DNA and replication on hepatocellular carcinoma recurrence. British Journal of Cancer, 2016, 115, 841-847.                                                                | 2.9 | 12        |
| 99  | Characterization of Genetic Networks Associated with Alzheimer's Disease. Methods in Molecular<br>Biology, 2016, 1303, 459-477.                                                                                                       | 0.4 | 11        |
| 100 | The polarity protein Scrib limits atherosclerosis development in mice. Cardiovascular Research, 2019,<br>115, 1963-1974.                                                                                                              | 1.8 | 11        |
| 101 | Detect differentially methylated regions using non-homogeneous hidden Markov model for methylation array data. Bioinformatics, 2017, 33, 3701-3708.                                                                                   | 1.8 | 10        |
| 102 | Constructing Bayesian networks by integrating gene expression and copy number data identifies<br><i>NLGN4Y</i> as a novel regulator of prostate cancer progression. Oncotarget, 2016, 7, 68688-68707.                                 | 0.8 | 10        |
| 103 | A probabilistic multi-omics data matching method for detecting sample errors in integrative analysis.<br>GigaScience, 2019, 8, .                                                                                                      | 3.3 | 9         |
| 104 | Computational deconvolution of synovial tissue cellular composition: presence of adipocytes in synovial tissue decreased during arthritis pathogenesis and progression. Physiological Genomics, 2019, 51, 241-253.                    | 1.0 | 8         |
| 105 | Early-Stage Lung Adenocarcinoma MDM2 Genomic Amplification Predicts Clinical Outcome and Response to Targeted Therapy. Cancers, 2022, 14, 708.                                                                                        | 1.7 | 8         |
| 106 | Comparison of brain connectomes by MRI and genomics and its implication in Alzheimer's disease. BMC<br>Medicine, 2020, 18, 23.                                                                                                        | 2.3 | 6         |
| 107 | A community effort to identify and correct mislabeled samples in proteogenomic studies. Patterns, 2021, 2, 100245.                                                                                                                    | 3.1 | 6         |
| 108 | HBV genome-enriched single cell sequencing revealed heterogeneity in HBV-driven hepatocellular carcinoma (HCC). BMC Medical Genomics, 2022, 15, .                                                                                     | 0.7 | 6         |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Temporal genetic association and temporal genetic causality methods for dissecting complex networks. Nature Communications, 2018, 9, 3980.                                                           | 5.8 | 5         |
| 110 | Transcriptional Circuitry of NKX2-1 and SOX1 Defines an Unrecognized Lineage Subtype of Small-Cell<br>Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1480-1494. | 2.5 | 4         |
| 111 | Integrating epigenetic data into molecular casual networks. Molecular Pain, 2014, 10, O21.                                                                                                           | 1.0 | 3         |
| 112 | Global DNA methylation of WTC prostate cancer tissues show signature differences compared to non-exposed cases. Carcinogenesis, 2022, 43, 528-537.                                                   | 1.3 | 3         |
| 113 | Identification of Let-7 miRNA Activity as a Prognostic Biomarker of SHH Medulloblastoma. Cancers, 2022, 14, 139.                                                                                     | 1.7 | 3         |
| 114 | Network Integration of Genetically Regulated Gene Expression to Study Complex Diseases. , 0, , 88-109.                                                                                               |     | 2         |
| 115 | Functional dissection of human mitotic genes using CRISPR–Cas9 tiling screens. Genes and Development, 2022, 36, 495-510.                                                                             | 2.7 | 2         |
| 116 | Detecting virus-specific effects on post-infection temporal gene expression. BMC Bioinformatics, 2019, 20, 129.                                                                                      | 1.2 | 1         |
| 117 | Examining heterogeneity of stromal cells in tumor microenvironment based on pan-cancer single-cell<br>RNA sequencing data. Cancer Biology and Medicine, 2021, 18, 0-0.                               | 1.4 | 1         |
| 118 | Using Simulated Data to Evaluate Bayesian Network Approach for Integrating Diverse Data. , 2013, ,<br>119-130.                                                                                       |     | 1         |
| 119 | Systems Biology Approaches to Studying Diet x Genome Interactions. , 2011, , 63-76.                                                                                                                  |     | 1         |
| 120 | Influence of prostate cancer disease state and therapeutic selection on peripheral whole-blood RNA signature Journal of Clinical Oncology, 2015, 33, 166-166.                                        | 0.8 | 1         |
| 121 | 314â€NKG2A and HLA-E define a novel alternative immune checkpoint axis in bladder cancer. , 2021, 9, A338-A338.                                                                                      |     | 1         |
| 122 | F2â€01â€01: Oligodendrocyteâ€Enriched Gene Networks Reveal Novel Pathways and Key Targets in the<br>Pathogenesis of Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P214.                   | 0.4 | 0         |
| 123 | Continuous genomic monitoring of multiple myeloma patients to identify patients of high risk for poor prognosis Journal of Clinical Oncology, 2021, 39, e20035-e20035.                               | 0.8 | 0         |
| 124 | Interferon α Has Varied Effects On CD34+ Cells From Patients With Polycythemia Vera. Blood, 2013, 122, 2840-2840.                                                                                    | 0.6 | 0         |
| 125 | Function of microRNA activity by ActMiR in bladder cancer Journal of Clinical Oncology, 2016, 34, 4531-4531.                                                                                         | 0.8 | 0         |
| 126 | Prognostic significance of PIK3CA mutation in patients with muscle-invasive urothelial carcinoma<br>(UC) Journal of Clinical Oncology, 2016, 34, e16002-e16002.                                      | 0.8 | 0         |

| #   | Article                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Association of tumor mutational burden with genomic alterations in Chinese urothelial carcinoma.<br>Molecular Carcinogenesis, 2021, , .                              | 1.3 | 0         |
| 128 | 621â€NKG2A and HLA-E define a novel mechanism of resistance to immunotherapy with M. bovis BCG in non-muscle-invasive bladder cancer patients. , 2021, 9, A651-A651. |     | 0         |
| 129 | Abstract P046: NKG2A and HLA-E define a novel alternative immune checkpoint axis in bladder cancer. , 2022, , .                                                      |     | 0         |
| 130 | CBIO-24. KINETOCHORE MISREGULATION IN GLIOBLASTOMA AND OTHER CANCERS. Neuro-Oncology, 2020, 22, ii20-ii21.                                                           | 0.6 | 0         |