Reynold A Panettieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7580452/publications.pdf

Version: 2024-02-01

116 papers 3,988 citations

36 h-index 57 g-index

117 all docs

117 docs citations

117 times ranked

5432 citing authors

#	Article	IF	CITATIONS
1	Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respiratory Medicine, the, 2014, 2, 891-901.	10.7	248
2	Tumor Necrosis Factor- α –Induced Secretion of RANTES and Interleukin-6 from Human Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2002, 26, 465-474.	2.9	178
3	Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials. Lancet Respiratory Medicine, the, 2018, 6, 511-525.	10.7	175
4	A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes in asthma. Human Molecular Genetics, 2015, 24, 3005-3020.	2.9	162
5	Upregulation of Mas-related G Protein coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-1. Respiratory Research, 2018, 19, 1.	3.6	146
6	Immunostimulatory Defective Viral Genomes from Respiratory Syncytial Virus Promote a Strong Innate Antiviral Response during Infection in Mice and Humans. PLoS Pathogens, 2015, 11, e1005122.	4.7	119
7	Paucigranulocytic asthma: Uncoupling of airway obstruction from inflammation. Journal of Allergy and Clinical Immunology, 2019, 143, 1287-1294.	2.9	103
8	<i>Aspergillus fumigatus</i> -Induced Allergic Airway Inflammation Alters Surfactant Homeostasis and Lung Function in BALB/c Mice. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 45-50.	2.9	85
9	Transforming Growth Factor \hat{l}^21 Function in Airway Remodeling and Hyperresponsiveness. The Missing Link?. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 432-442.	2.9	84
10	Defining an olfactory receptor function in airway smooth muscle cells. Scientific Reports, 2016, 6, 38231.	3.3	83
11	Airway smooth muscle as an immunomodulatory cell. Pulmonary Pharmacology and Therapeutics, 2009, 22, 353-359.	2.6	81
12	TAS2R activation promotes airway smooth muscle relaxation despite \hat{l}^2 sub>2-adrenergic receptor tachyphylaxis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L304-L311.	2.9	76
13	CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. Journal of Clinical Investigation, 2019, 129, 1387-1401.	8.2	76
14	Unconventional Gas and Oil Drilling Is Associated with Increased Hospital Utilization Rates. PLoS ONE, 2015, 10, e0131093.	2.5	72
15	Development and Characterization of Pepducins as Gs-biased Allosteric Agonists*. Journal of Biological Chemistry, 2014, 289, 35668-35684.	3.4	71
16	TGF-Î ² 1 Evokes Human Airway Smooth Muscle Cell Shortening and Hyperresponsiveness via Smad3. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 575-584.	2.9	71
17	Bradykinin Induces Interleukin-6 Production in Human Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 330-338.	2.9	66
18	\hat{l}^2 -Agonist-mediated Relaxation of Airway Smooth Muscle Is Protein Kinase A-dependent. Journal of Biological Chemistry, 2014, 289, 23065-23074.	3.4	66

#	Article	IF	CITATIONS
19	Airway smooth muscle: An immunomodulatory cell. Journal of Allergy and Clinical Immunology, 2002, 110, S269-S274.	2.9	65
20	Phosphoinositide 3-Kinase in Asthma: Novel Roles and Therapeutic Approaches. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 700-707.	2.9	65
21	TLR3 activation stimulates cytokine secretion without altering agonist-induced human small airway contraction or relaxation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L530-L537.	2.9	60
22	Soluble guanylate cyclase as an alternative target for bronchodilator therapy in asthma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2355-62.	7.1	57
23	Oncostatin M causes VEGF release from human airway smooth muscle: synergy with IL-1β. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L1040-L1048.	2.9	56
24	Albuterol–Budesonide Fixed-Dose Combination Rescue Inhaler for Asthma. New England Journal of Medicine, 2022, 386, 2071-2083.	27.0	55
25	An inflammation-independent contraction mechanophenotype of airway smooth muscle in asthma. Journal of Allergy and Clinical Immunology, 2016, 138, 294-297.e4.	2.9	52
26	Interdicting G _q Activation in Airway Disease by Receptor-Dependent and Receptor-Independent Mechanisms. Molecular Pharmacology, 2016, 89, 94-104.	2.3	52
27	Airway smooth muscle: immunomodulatory cells that modulate airway remodeling?. Respiratory Physiology and Neurobiology, 2003, 137, 277-293.	1.6	50
28	CTNNA3 and SEMA3D: Promising loci for asthma exacerbation identified through multiple genome-wide association studies. Journal of Allergy and Clinical Immunology, 2015, 136, 1503-1510.	2.9	50
29	Oncostatin M causes eotaxin-1 release from airway smooth muscle: Synergy with IL-4 and IL-13. Journal of Allergy and Clinical Immunology, 2005, 115, 514-520.	2.9	47
30	Elastomeric sensor surfaces for high-throughput single-cell force cytometry. Nature Biomedical Engineering, 2018, 2, 124-137.	22.5	47
31	Obesity increases airway smooth muscle responses to contractile agonists. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L673-L681.	2.9	45
32	H2S relaxes isolated human airway smooth muscle cells via the sarcolemmal KATP channel. Biochemical and Biophysical Research Communications, 2014, 446, 393-398.	2.1	43
33	Neutrophilic and Pauci-immune Phenotypes in Severe Asthma. Immunology and Allergy Clinics of North America, 2016, 36, 569-579.	1.9	43
34	Regulator of G protein signaling 2 is a key modulator of airway hyperresponsiveness. Journal of Allergy and Clinical Immunology, 2012, 130, 968-976.e3.	2.9	40
35	Regulation of G Protein–Coupled Receptor–Adenylyl Cyclase Responsiveness in Human Airway Smooth Muscle by Exogenous and Autocrine Adenosine. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 155-163.	2.9	39
36	PDE8 Is Expressed in Human Airway Smooth Muscle and Selectively Regulates cAMP Signaling by $\hat{1}^2$ sub>2 sub>2 formulation and Adenylyl Cyclase 6. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 530-541.	2.9	39

#	Article	IF	Citations
37	Repeated allergen inhalations induce DNA synthesis in airway smooth muscle and epithelial cells in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L417-L424.	2.9	37
38	Biased signaling of the protonâ€sensing receptor OGR1 by benzodiazepines. FASEB Journal, 2018, 32, 862-874.	0.5	36
39	Inhibition of PI3K promotes dilation of human small airways in a rho kinaseâ€dependent manner. British Journal of Pharmacology, 2016, 173, 2726-2738.	5.4	34
40	MicroRNA-203 negatively regulates c-Abl, ERK1/2 phosphorylation, and proliferation in smooth muscle cells. Physiological Reports, 2015, 3, e12541.	1.7	33
41	Guiding principles for use of newer biologics and bronchial thermoplasty for patients with severe asthma. Annals of Allergy, Asthma and Immunology, 2017, 119, 533-540.	1.0	33
42	MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells. PLoS ONE, 2016, 11, e0150842.	2.5	31
43	Effects of Corticosteroids on Structural Cells in Asthma and Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 2004, 1, 231-234.	3.5	29
44	Gα ₁₂ facilitates shortening in human airway smooth muscle by modulating phosphoinositide 3â€kinaseâ€mediated activation in a RhoAâ€dependent manner. British Journal of Pharmacology, 2017, 174, 4383-4395.	5.4	28
45	The Role of Neutrophils in Asthma. Immunology and Allergy Clinics of North America, 2018, 38, 629-638.	1.9	28
46	Glucocorticoids rapidly activate cAMP production via G _{αs} to initiate nonâ€genomic signaling that contributes to oneâ€third of their canonical genomic effects. FASEB Journal, 2020, 34, 2882-2895.	0.5	28
47	Airway Smooth Muscle–Specific Transcriptomic Signatures of Glucocorticoid Exposure. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 110-120.	2.9	27
48	Asthma Yardstick. Annals of Allergy, Asthma and Immunology, 2017, 118, 133-142.e3.	1.0	26
49	Glucocorticoid Receptor ChIP-Seq Identifies PLCD1 as a KLF15 Target that Represses Airway Smooth Muscle Hypertrophy. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 226-237.	2.9	25
50	A microphysiological model of the bronchial airways reveals the interplay of mechanical and biochemical signals in bronchospasm. Nature Biomedical Engineering, 2019, 3, 532-544.	22.5	25
51	Glucocorticoid and TNF signaling converge at A20 (TNFAIP3) to repress airway smooth muscle cytokine expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L421-L432.	2.9	24
52	Biased TAS2R Bronchodilators Inhibit Airway Smooth Muscle Growth by Downregulating Phosphorylated Extracellular Signal–regulated Kinase 1/2. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 532-540.	2.9	24
53	Budesonide enhances agonist-induced bronchodilation in human small airways by increasing cAMP production in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L345-L355.	2.9	24
54	Regulation of gelatinases in human airway smooth muscle cells: mechanism of progelatinase A activation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L174-L182.	2.9	23

#	Article	IF	Citations
55	Effects of rhinovirus 39 infection on airway hyperresponsiveness to carbachol in human airways precision cut lung slices. Journal of Allergy and Clinical Immunology, 2018, 141, 1887-1890.e1.	2.9	22
56	Inhibition of spleen tyrosine kinase attenuates IgEâ€mediated airway contraction and mediator release in human precision cut lung slices. British Journal of Pharmacology, 2016, 173, 3080-3087.	5.4	21
57	Transforming Growth Factor-β1 Decreases β ₂ -Agonist–induced Relaxation in Human Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 209-218.	2.9	21
58	STIM1 is a core trigger of airway smooth muscle remodeling and hyperresponsiveness in asthma. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
59	Diacylglycerol kinase $\hat{\mathbf{I}}^{\mathbf{q}}$ promotes allergic airway inflammation and airway hyperresponsiveness through distinct mechanisms. Science Signaling, 2019, 12, .	3.6	20
60	Bnip3 regulates airway smooth muscle cell focal adhesion and proliferation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L758-L767.	2.9	19
61	Harmonized outcome measures for use in asthma patient registries and clinical practice. Journal of Allergy and Clinical Immunology, 2019, 144, 671-681.e1.	2.9	19
62	Airway smooth muscle: immunomodulatory cells?. Allergy and Asthma Proceedings, 2004, 25, 381-6.	2.2	19
63	Association of groundwater constituents with topography and distance to unconventional gas wells in NE Pennsylvania. Science of the Total Environment, 2017, 577, 195-201.	8.0	18
64	RGS4 Overexpression in Lung Attenuates Airway Hyperresponsiveness in Mice. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 89-98.	2.9	18
65	Molecular Tension Probes to Investigate the Mechanopharmacology of Single Cells: A Step toward Personalized Mechanomedicine. Advanced Healthcare Materials, 2018, 7, e1800069.	7.6	17
66	Oncostatin M expression induced by bacterial triggers drives airway inflammatory and mucus secretion in severe asthma. Science Translational Medicine, 2022, 14, eabf8188.	12.4	17
67	Tralokinumab for the treatment of severe, uncontrolled asthma: the ATMOSPHERE clinical development program. Immunotherapy, 2018, 10, 473-490.	2.0	16
68	Regulator of G protein signaling 5 restricts neutrophil chemotaxis and trafficking. Journal of Biological Chemistry, 2018, 293, 12690-12702.	3.4	16
69	Soluble Guanylate Cyclase Agonists Induce Bronchodilation in Human Small Airways. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 43-48.	2.9	16
70	<p>The CHRONICLE Study of US Adults with Subspecialist-Treated Severe Asthma: Objectives, Design, and Initial Results</p> . Journal of Pragmatic and Observational Research, 2020, Volume 11, 77-90.	1.5	16
71	Lipid-laden macrophages as biomarkers of vaping-associated lung injury. Lancet Respiratory Medicine,the, 2020, 8, e6.	10.7	16
72	Phosphodiesterases Regulate Airway Smooth Muscle Function in Health and Disease. Current Topics in Developmental Biology, 2007, 79, 61-74.	2.2	14

#	Article	IF	CITATIONS
73	Bronchodilators, receptors and cross-talk: Together is better?. Postgraduate Medicine, 2015, 127, 771-780.	2.0	14
74	An inherent dysfunction in soluble guanylyl cyclase is present in the airway of severe asthmatics and is associated with aberrant redox enzyme expression and compromised NO-cGMP signaling. Redox Biology, 2021, 39, 101832.	9.0	14
75	Metabolomics in asthma: A platform for discovery. Molecular Aspects of Medicine, 2022, 85, 100990.	6.4	14
76	Pepducins as a potential treatment strategy for asthma and COPD. Current Opinion in Pharmacology, 2018, 40, 120-125.	3.5	13
77	Formaldehyde Induces Rho-Associated Kinase Activity to Evoke Airway Hyperresponsiveness. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 542-553.	2.9	12
78	Functional NMDA receptors are expressed by human pulmonary artery smooth muscle cells. Scientific Reports, 2021, 11, 8205.	3.3	12
79	The odorant receptor OR2W3 on airway smooth muscle evokes bronchodilation via a cooperative chemosensory tradeoff between TMEM16A and CFTR. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28485-28495.	7.1	11
80	Airway smooth muscle and airway hyperresponsiveness in asthma: mechanisms of airway smooth muscle dysfunction. Minerva Medica, 2022, 113 , .	0.9	11
81	Modulation of airway hyperresponsiveness by rhinovirus exposure. Respiratory Research, 2018, 19, 208.	3.6	10
82	Salicylic acid amplifies Carbachol-induced bronchoconstriction in human precision-cut lung slices. Respiratory Research, 2019, 20, 72.	3.6	10
83	Molecular Nanomechanical Mapping of Histamine-Induced Smooth Muscle Cell Contraction and Shortening. ACS Nano, 2021, 15, 11585-11596.	14.6	10
84	Identifying a reference list of respiratory sensitizers for the evaluation of novel approaches to study respiratory sensitization. Critical Reviews in Toxicology, 2021, 51, 792-804.	3.9	10
85	Mucins MUC5AC and MUC5B Are Variably Packaged in the Same and in Separate Secretory Granules. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1081-1095.	5.6	10
86	Revisiting John Snow to Meet the Challenge of Nontuberculous Mycobacterial Lung Disease. International Journal of Environmental Research and Public Health, 2019, 16, 4250.	2.6	9
87	How Important Is Adherence to Inhaled Medications Before Starting a Biologic Therapy for Asthma?. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 1578-1579.	3.8	8
88	Modulation of Bronchomotor Tone Pathways in Airway Smooth Muscle Function and Bronchomotor Tone in Asthma. Clinics in Chest Medicine, 2019, 40, 51-57.	2.1	8
89	Asthma and COVID: What Are the Important Questions?. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2487-2488.	3.8	8
90	TGF- \hat{l}^2 : The missing link in obesity-associated airway diseases?. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100016.	3.6	8

#	Article	IF	CITATIONS
91	Diacylglycerol Kinase Inhibition Reduces Airway Contraction by Negative Feedback Regulation of Gq-Signaling. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 658-671.	2.9	8
92	Patient-reported outcomes in moderate-to-severe allergic asthmatics treated with omalizumab: a systematic literature review of randomized controlled trials. Current Medical Research and Opinion, 2018, 34, 65-80.	1.9	7
93	CD2 Regulates Pathogenesis of Asthma Induced by House Dust Mice Extract. Frontiers in Immunology, 2020, 11, 881.	4.8	7
94	Dexamethasone rescues TGF- \hat{l}^21 -mediated \hat{l}^22 -adrenergic receptor dysfunction and attenuates phosphodiesterase 4D expression in human airway smooth muscle cells. Respiratory Research, 2020, 21, 256.	3.6	6
95	Airway relaxation mechanisms and structural basis of osthole for improving lung function in asthma. Science Signaling, 2020, 13 , .	3.6	6
96	Inhibition of ABCC1 Decreases cAMP Egress and Promotes Human Airway Smooth Muscle Cell Relaxation. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 96-106.	2.9	6
97	Differing perceptions of asthma control and treatment effectiveness by patients with severe asthma and treating subspecialists in the United States. Journal of Asthma, 2022, 59, 1859-1868.	1.7	5
98	Bronchial Thermoplasty: Targeting Structural Cells in Severe Persistent Asthma. Annals of the American Thoracic Society, 2015, 12, 1593-4.	3.2	5
99	Clinical Issues in Severe Asthma. Chest, 2018, 154, 1459-1460.	0.8	4
100	Autocrine regulation of airway smooth muscle contraction by diacylglycerol kinase. Journal of Cellular Physiology, $2021, , .$	4.1	4
101	Obesity elicits a unique metabolomic signature in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L297-L307.	2.9	4
102	Last Word on Point: Alterations in airway smooth muscle phenotype do cause airway hyperresponsiveness in asthma. Journal of Applied Physiology, 2012, 113, 847-847.	2.5	3
103	Anti-IgE or Anti-IL5: That Is the Question. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 782-784.	3.8	3
104	Upregulated P-Rex1 exacerbates human airway smooth muscle hyperplasia in asthma. Journal of Allergy and Clinical Immunology, 2019, 143, 778-781.e5.	2.9	3
105	Acetaminophen is both bronchodilatory and bronchoprotective in human precision cut lung slice airways. Xenobiotica, 2019, 49, 1106-1115.	1.1	3
106	Major Components of an Asthma Disease Management Programme. Disease Management and Health Outcomes, 1998, 4, 243-253.	0.4	2
107	Clinical Issues in Severe Asthma. Chest, 2018, 154, 982-983.	0.8	2
108	Impact of a Respiratory Disease Young Investigators' Forum on the Career Development of Physician-Scientists. ATS Scholar, 2020, 1, 243-259.	1.3	2

#	Article	IF	CITATIONS
109	Na+/H+ Exchanger Regulatory Factor 1 Mediates the Pathogenesis of Airway Inflammation in a Murine Model of House Dust Mite–Induced Asthma. Journal of Immunology, 2021, 206, 2301-2311.	0.8	2
110	Downregulation of Guanylate Cyclase Enzyme in Human Asthma model to Investigate NOâ€sGc―cGMP as a Therapeutic Pathway in Asthma. FASEB Journal, 2018, 32, 840.11.	0.5	2
111	Steroid-induced fibroblast growth factors drive an epithelial-mesenchymal inflammatory axis in severe asthma. Science Translational Medicine, 2022, 14, eabl8146.	12.4	2
112	Improvement in Lung Function with Dupilumab Does Not Predict Its Effects on Reducing Asthma Exacerbation. Journal of Asthma and Allergy, 0, Volume 15, 851-854.	3.4	1
113	TENOR Revisited. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2254-2255.	3.8	0
114	Postâ€Transcriptional Regulation of CD38 expression in human airway smooth muscle (HASM) cells. FASEB Journal, 2010, 24, 626.6.	0.5	0
115	Rotten eggs' H 2 S acting on human airway smooth muscle mechanics. FASEB Journal, 2013, 27, 1216.5.	0.5	0
116	Bronchodilator Responsiveness: An Underappreciated Biomarker for Asthma Exacerbations. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 229-230.	3.8	0