Grzegorz M Szewczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7580275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of RPE lipofuscin results in rescue from retinal degeneration in a mouse model of advanced Stargardt disease: Role of reactive oxygen species. Free Radical Biology and Medicine, 2022, 182, 132-149.	2.9	8
2	Gallium Mesoporphyrin IX-Mediated Photodestruction: A Pharmacological Trojan Horse Strategy To Eliminate Multidrug-Resistant <i>Staphylococcus aureus</i> . Molecular Pharmaceutics, 2022, 19, 1434-1448.	4.6	8
3	The effect of aging and antioxidants on photoreactivity and phototoxicity of human melanosomes: An in vitro study. Pigment Cell and Melanoma Research, 2021, 34, 670-682.	3.3	17
4	Photoreactivity of Bis-retinoid A2E Complexed with a Model Protein in Selected Model Systems. Cell Biochemistry and Biophysics, 2020, 78, 415-427.	1.8	7
5	The Effect of Antioxidants on Photoreactivity and Phototoxic Potential of RPE Melanolipofuscin Granules from Human Donors of Different Age. Antioxidants, 2020, 9, 1044.	5.1	9
6	Developing [60]Fullerene Nanomaterials for Better Photodynamic Treatment of Non-Melanoma Skin Cancers. ACS Biomaterials Science and Engineering, 2020, 6, 5930-5940.	5.2	20
7	A [60]fullerene nanoconjugate with gemcitabine: synthesis, biophysical properties and biological evaluation for treating pancreatic cancer. Cancer Nanotechnology, 2020, 11, .	3.7	14
8	Farnesol potentiates photodynamic inactivation of Staphylococcus aureus with the use of red light-activated porphyrin TMPyP. Journal of Photochemistry and Photobiology B: Biology, 2020, 206, 111863.	3.8	7
9	Sodium nitrite potentiates antimicrobial photodynamic inactivation: possible involvement of peroxynitrate. Photochemical and Photobiological Sciences, 2019, 18, 505-515.	2.9	10
10	Amphiphilic tetracationic porphyrins are exceptionally active antimicrobial photosensitizers: In vitro and in vivo studies with the freeâ€base and Pd helate. Journal of Biophotonics, 2019, 12, e201800318.	2.3	13
11	Arduino-based light source used to demonstrate mixing of colors and as a simple system for luminescence observations. Physics Education, 2019, 54, 023005.	0.5	3
12	Photobleaching of pheomelanin increases its phototoxic potential: Physicochemical studies of synthetic pheomelanin subjected to aerobic photolysis. Pigment Cell and Melanoma Research, 2019, 32, 359-372.	3.3	16
13	Potassium iodide potentiates antimicrobial photodynamic inactivation mediated by Rose Bengal: in vitro and in vivo studies. , 2018, , .		0
14	Potassium Iodide Potentiates Broad-Spectrum Antimicrobial Photodynamic Inactivation Using Photofrin. ACS Infectious Diseases, 2017, 3, 320-328.	3.8	105
15	Potassium Iodide Potentiates Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal in <i>In Vitro</i> and <i>In Vivo</i> Studies. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	100
16	Lipofuscin-mediated photic stress inhibits phagocytic activity of ARPE-19 cells; effect of donors' age and antioxidants. Free Radical Research, 2017, 51, 799-811.	3.3	21
17	Synthesis, structural, spectroscopic, computational and cytotoxic studies of BODIPY dyes. Sensors and Actuators B: Chemical, 2017, 238, 548-555.	7.8	24
18	Aerobic photoreactivity of synthetic eumelanins and pheomelanins: generation of singlet oxygen and superoxide anion. Pigment Cell and Melanoma Research, 2016, 29, 669-678.	3.3	49

#	Article	IF	CITATIONS
19	Inhibition of phagocytic activity of ARPE-19 cells by free radical mediated oxidative stress. Free Radical Research, 2016, 50, 887-897.	3.3	16
20	Roles of reactive oxygen species in <scp>UVA</scp> â€induced oxidation of 5,6â€dihydroxyindoleâ€2â€carboxylic acidâ€melanin as studied by differential spectrophotometric method. Pigment Cell and Melanoma Research, 2016, 29, 340-351.	3.3	38
21	Photoaging of retinal pigment epithelial melanosomes: The effect of photobleaching on morphology and reactivity of the pigment granules. Free Radical Biology and Medicine, 2016, 97, 320-329.	2.9	15
22	Photodynamic Inactivation of Candida albicans with Imidazoacridinones: Influence of Irradiance, Photosensitizer Uptake and Reactive Oxygen Species Generation. PLoS ONE, 2015, 10, e0129301.	2.5	38
23	Changes in production of reactive oxygen species in illuminated thylakoids isolated during development and senescence of barley. Journal of Plant Physiology, 2015, 184, 49-56.	3.5	20
24	Photoactivation of lysosomally sequestered sunitinib after angiostatic treatment causes vascular occlusion and enhances tumor growth inhibition. Cell Death and Disease, 2015, 6, e1641-e1641.	6.3	40
25	Antimicrobial photodynamic therapy with fulleropyrrolidine: photoinactivation mechanism of Staphylococcus aureus, in vitro and in vivo studies. Applied Microbiology and Biotechnology, 2015, 99, 4031-4043.	3.6	88
26	Synthesis, spectroscopic properties and interaction with a liposomal membrane of a novel iodinated magnesium phthalocyanine. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 286, 55-63.	3.9	22
27	New insight into singlet oxygen generation at surface modified nanocrystalline TiO2 – the effect of near-infrared irradiation. Dalton Transactions, 2013, 42, 9468.	3.3	60
28	Imidazoacridinone-dependent lysosomal photodestruction: a pharmacological Trojan horse approach to eradicate multidrug-resistant cancers. Cell Death and Disease, 2012, 3, e293-e293.	6.3	77
29	Zincâ€induced Structural Effects Enhance Oxygen Consumption and Superoxide Generation in Synthetic Pheomelanins on UVA/Visible Light Irradiation ^{â€} . Photochemistry and Photobiology, 2010, 86, 757-764.	2.5	41
30	Subâ€lethal Photodynamic Damage to ARPEâ€19 Cells Transiently Inhibits Their Phagocytic Activity ^{â€} . Photochemistry and Photobiology, 2010, 86, 772-780.	2.5	17
31	Photocatalytic Generation of Oxygen Radicals by the Water-Soluble Bacteriochlorophyll Derivative WST11, Noncovalently Bound to Serum Albumin. Journal of Physical Chemistry A, 2009, 113, 8027-8037.	2.5	119
32	Neuromelanin can protect against ironâ€mediated oxidative damage in system modeling iron overload of brain aging and Parkinson's disease. Journal of Neurochemistry, 2008, 106, 1866-1875.	3.9	174
33	Melanin and Oxidative Reactions. , 2008, , 147-158.		1
34	Photobleaching of Melanosomes from Retinal Pigment Epithelium: II. Effects on the Response of Living Cells to Photic Stress. Photochemistry and Photobiology, 2007, 83, 925-930.	2.5	25
35	Effects of Photodegradation on the Physical and Antioxidant Properties of Melanosomes Isolated from Retinal Pigment Epithelium. Photochemistry and Photobiology, 2006, 82, 1024.	2.5	76