Melanie H Cobb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7580019/publications.pdf

Version: 2024-02-01

205 papers 26,546 citations

69 h-index

12303

160

217 all docs

217 docs citations

217 times ranked 24079 citing authors

g-index

#	Article	IF	Citations
1	Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions*. Endocrine Reviews, 2001, 22, 153-183.	8.9	3,352
2	Mitogen-activated protein kinase pathways. Current Opinion in Cell Biology, 1997, 9, 180-186.	2.6	2,361
3	ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell, 1991, 65, 663-675.	13.5	1,862
4	How MAP Kinases Are Regulated. Journal of Biological Chemistry, 1995, 270, 14843-14846.	1.6	1,588
5	MAP Kinases. Chemical Reviews, 2001, 101, 2449-2476.	23.0	812
6	MAP kinase pathways. Progress in Biophysics and Molecular Biology, 1999, 71, 479-500.	1.4	749
7	Activation Mechanism of the MAP Kinase ERK2 by Dual Phosphorylation. Cell, 1997, 90, 859-869.	13.5	695
8	Phosphorylation of the MAP Kinase ERK2 Promotes Its Homodimerization and Nuclear Translocation. Cell, 1998, 93, 605-615.	13.5	635
9	Atomic structure of the MAP kinase ERK2 at 2.3 Ã resolution. Nature, 1994, 367, 704-711.	13.7	619
10	WNK1, a Novel Mammalian Serine/Threonine Protein Kinase Lacking the Catalytic Lysine in Subdomain II. Journal of Biological Chemistry, 2000, 275, 16795-16801.	1.6	437
11	Structural basis of inhibitor selectivity in MAP kinases. Structure, 1998, 6, 1117-1128.	1.6	433
12	Pharmacological inhibitors of MAPK pathways. Trends in Pharmacological Sciences, 2002, 23, 40-45.	4.0	408
13	New Insights into the Control of MAP Kinase Pathways. Experimental Cell Research, 1999, 253, 255-270.	1.2	388
14	ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic Programs. Cell Reports, 2016, 16, 1259-1272.	2.9	340
15	Chloride Sensing by WNK1 Involves Inhibition of Autophosphorylation. Science Signaling, 2014, 7, ra41.	1.6	314
16	Crystal Structures of MAP Kinase p38 Complexed to the Docking Sites on Its Nuclear Substrate MEF2A and Activator MKK3b. Molecular Cell, 2002, 9, 1241-1249.	4.5	303
17	A constitutively active and nuclear form of the MAP kinase ERK2 is sufficient for neurite outgrowth and cell transformation. Current Biology, 1998, 8, 1141-1152.	1.8	302
18	The PHD Domain of MEKK1 Acts as an E3 Ubiquitin Ligase and Mediates Ubiquitination and Degradation of ERK1/2. Molecular Cell, 2002, 9, 945-956.	4. 5	294

#	Article	IF	Citations
19	IL-1 Receptor-Associated Kinase Modulates Host Responsiveness to Endotoxin. Journal of Immunology, 2000, 164, 4301-4306.	0.4	269
20	HTLV-l Tax Protein Binds to MEKK1 to Stimulate IκB Kinase Activity and NF-κB Activation. Cell, 1998, 93, 875-884.	13.5	260
21	The roles of MAPKs in disease. Cell Research, 2008, 18, 436-442.	5.7	215
22	ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14788-14793.	3.3	205
23	Isolation of MEK5 and Differential Expression of Alternatively Spliced Forms. Journal of Biological Chemistry, 1995, 270, 28897-28902.	1.6	204
24	Reconstitution of Mitogen-activated Protein Kinase Phosphorylation Cascades in Bacteria. Journal of Biological Chemistry, 1997, 272, 11057-11062.	1.6	191
25	WNK1 activates SGK1 to regulate the epithelial sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10315-10320.	3.3	185
26	Differential Effects of PAK1-activating Mutations Reveal Activity-dependent and -independent Effects on Cytoskeletal Regulation. Journal of Biological Chemistry, 1998, 273, 28191-28198.	1.6	183
27	Crystal Structure of the Kinase Domain of WNK1, a Kinase that Causes a Hereditary Form of Hypertension. Structure, 2004, 12, 1303-1311.	1.6	179
28	Stimulation of NFκB Activity by Multiple Signaling Pathways Requires PAK1. Journal of Biological Chemistry, 2000, 275, 19693-19699.	1.6	177
29	Purification and properties of extracellular regulated kinase 1, an insulin-stimulated microtubule-associated protein 2 kinase. Biochemistry, 1991, 30, 278-286.	1.2	176
30	TAO kinases mediate activation of p38 in response to DNA damage. EMBO Journal, 2007, 26, 2005-2014.	3.5	172
31	WNK1 and OSR1 regulate the Na+, K+, 2Cl- cotransporter in HeLa cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10883-10888.	3.3	166
32	The G Protein-Coupled Taste Receptor T1R1/T1R3 Regulates mTORC1 and Autophagy. Molecular Cell, 2012, 47, 851-862.	4.5	160
33	Small Cell Lung Cancer: Can Recent Advances in Biology and Molecular Biology Be Translated into Improved Outcomes?. Journal of Thoracic Oncology, 2016, 11, 453-474.	0.5	156
34	ERKs, extracellular signal-regulated MAP-2 kinases. Current Opinion in Cell Biology, 1991, 3, 1025-1032.	2.6	145
35	Identification of Substrates and Regulators of the Mitogen-activated Protein Kinase ERK5 Using Chimeric Protein Kinases. Journal of Biological Chemistry, 1998, 273, 3854-3860.	1.6	144
36	ERK2 enters the nucleus by a carrier-independent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7496-7501.	3.3	142

3

#	Article	IF	CITATIONS
37	Regulation of Insulin Gene Transcription by ERK1 and ERK2 in Pancreatic \hat{l}^2 Cells. Journal of Biological Chemistry, 2003, 278, 32969-32977.	1.6	141
38	FAK Phosphorylation by ERK Primes Ras-Induced Tyrosine Dephosphorylation of FAK Mediated by PIN1 and PTP-PEST. Molecular Cell, 2009, 35, 11-25.	4.5	141
39	WNK1 Activates ERK5 by an MEKK2/3-dependent Mechanism. Journal of Biological Chemistry, 2004, 279, 7826-7831.	1.6	140
40	Overview of the Alliance for Cellular Signaling. Nature, 2002, 420, 703-706.	13.7	134
41	Mutation of Position 52 in ERK2 Creates a Nonproductive Binding Mode for Adenosine 5â€~-Triphosphateâ€,‡. Biochemistry, 1996, 35, 5641-5646.	1.2	133
42	Regulation of WNK1 by an Autoinhibitory Domain and Autophosphorylation. Journal of Biological Chemistry, 2002, 277, 48456-48462.	1.6	133
43	Isolation of TAO1, a Protein Kinase That Activates MEKs in Stress-activated Protein Kinase Cascades. Journal of Biological Chemistry, 1998, 273, 28625-28632.	1.6	132
44	Enteroid Monolayers Reveal an Autonomous WNT and BMP Circuit Controlling Intestinal Epithelial Growth and Organization. Developmental Cell, 2018, 44, 624-633.e4.	3.1	128
45	ERK5 and ERK2 Cooperate to Regulate NF-κB and Cell Transformation. Journal of Biological Chemistry, 2001, 276, 7927-7931.	1.6	121
46	Contribution of the ERK5/MEK5 Pathway to Ras/Raf Signaling and Growth Control. Journal of Biological Chemistry, 1999, 274, 31588-31592.	1.6	119
47	Regulation of ERK1 and ERK2 by Glucose and Peptide Hormones in Pancreatic \hat{I}^2 Cells. Journal of Biological Chemistry, 2003, 278, 32517-32525.	1.6	119
48	Properties of WNK1 and Implications for Other Family Members. Journal of Biological Chemistry, 2005, 280, 26653-26658.	1.6	118
49	Activity of the MAP kinase ERK2 is controlled by a flexible surface loop. Structure, 1995, 3, 299-307.	1.6	117
50	MEKK1 Binds Raf-1 and the ERK2 Cascade Components. Journal of Biological Chemistry, 2000, 275, 40120-40127.	1.6	111
51	Mechanisms of the amplifying pathway of insulin secretion in the \hat{l}^2 cell. , 2017, 179, 17-30.		106
52	NGF and other growth factors induce an association between ERK1 and the NGF receptor, gp140prototrk. Neuron, 1992, 9, 1053-1065.	3.8	105
53	MEKK1 Binds Directly to the c-Jun N-terminal Kinases/Stress-activated Protein Kinases. Journal of Biological Chemistry, 1997, 272, 32056-32060.	1.6	103
54	The N-terminal ERK-binding Site of MEK1 Is Required for Efficient Feedback Phosphorylation by ERK2 in Vitro and ERK Activation in Vivo. Journal of Biological Chemistry, 1999, 274, 34029-34035.	1.6	102

#	Article	IF	CITATIONS
55	ERK1/2-dependent Activation of Transcription Factors Required for Acute and Chronic Effects of Glucose on the Insulin Gene Promoter. Journal of Biological Chemistry, 2005, 280, 26751-26759.	1.6	100
56	MAP Kinase Modules: Many Roads Home. Current Biology, 2003, 13, R886-R888.	1.8	98
57	WNK1 Activates SGK1 by a Phosphatidylinositol 3-Kinase-dependent and Non-catalytic Mechanism. Journal of Biological Chemistry, 2005, 280, 34218-34223.	1.6	95
58	PTMapâ€"A sequence alignment software for unrestricted, accurate, and full-spectrum identification of post-translational modification sites. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 761-766.	3.3	94
59	Activation of Mitogen-activated Protein Kinase Cascades by p21-activated Protein Kinases in Cell-free Extracts of Xenopus Oocytes. Journal of Biological Chemistry, 1995, 270, 26067-26070.	1.6	93
60	ERK3 Is a Constitutively Nuclear Protein Kinase. Journal of Biological Chemistry, 1996, 271, 8951-8958.	1.6	87
61	Isolation of the Protein Kinase TAO2 and Identification of Its Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase Binding Domain. Journal of Biological Chemistry, 1999, 274, 28803-28807.	1.6	85
62	MEKK1 interacts with ?-actinin and localizes to stress fibers and focal adhesions. Cytoskeleton, 1999, 43, 186-198.	4.4	85
63	Identification of Novel Point Mutations in ERK2 That Selectively Disrupt Binding to MEK1. Journal of Biological Chemistry, 2002, 277, 14844-14852.	1.6	85
64	NeuroD1 regulates survival and migration of neuroendocrine lung carcinomas via signaling molecules TrkB and NCAM. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6524-6529.	3.3	84
65	Stimulus-Coupled Spatial Restriction of Extracellular Signal-Regulated Kinase 1/2 Activity Contributes to the Specificity of Signal-Response Pathways. Molecular and Cellular Biology, 2004, 24, 10145-10150.	1.1	83
66	Stress Pathway Activation Induces Phosphorylation of Retinoid X Receptor. Journal of Biological Chemistry, 2000, 275, 32193-32199.	1.6	82
67	Hydrophobic as Well as Charged Residues in Both MEK1 and ERK2 Are Important for Their Proper Docking. Journal of Biological Chemistry, 2001, 276, 26509-26515.	1.6	79
68	Stimulus-specific Requirements for MAP3 Kinases in Activating the JNK Pathway. Journal of Biological Chemistry, 2002, 277, 49105-49110.	1.6	79
69	WNK1 Phosphorylates Synaptotagmin 2 and Modulates Its Membrane Binding. Molecular Cell, 2004, 15, 741-751.	4.5	79
70	Characterization of OSR1, a Member of the Mammalian Ste20p/Germinal Center Kinase Subfamily. Journal of Biological Chemistry, 2004, 279, 11129-11136.	1.6	74
71	RhoA Binds to the Amino Terminus of MEKK1 and Regulates Its Kinase Activity. Journal of Biological Chemistry, 2004, 279, 1872-1877.	1.6	73
72	The Death Effector Domain Protein PEA-15 Prevents Nuclear Entry of ERK2 by Inhibiting Required Interactions. Journal of Biological Chemistry, 2004, 279, 12840-12847.	1.6	72

#	Article	IF	CITATIONS
73	Protein kinases. Current Opinion in Structural Biology, 1994, 4, 833-840.	2.6	71
74	Regulation of Stress-responsive Mitogen-activated Protein (MAP) Kinase Pathways by TAO2. Journal of Biological Chemistry, 2001, 276, 16070-16075.	1.6	69
75	Serum and Glucocorticoid-induced Kinase (SGK) 1 and the Epithelial Sodium Channel Are Regulated by Multiple with No Lysine (WNK) Family Members. Journal of Biological Chemistry, 2010, 285, 25161-25167.	1.6	69
76	Minireview: Nutrient Sensing by G Protein-Coupled Receptors. Molecular Endocrinology, 2013, 27, 1188-1197.	3.7	69
77	Chromatin-bound mitogen-activated protein kinases transmit dynamic signals in transcription complexes in \hat{l}^2 -cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13315-13320.	3.3	66
78	Uncoupling Raf1 from MEK1/2 Impairs Only a Subset of Cellular Responses to Raf Activation. Journal of Biological Chemistry, 2000, 275, 37303-37306.	1.6	65
79	Map Kinases Erk1 And Erk2: Pleiotropic Enzymes In A Ubiquitous Signaling Network. Advances in Cancer Research, 1994, 63, 93-116.	1.9	64
80	Contributions of the Mitogen-activated Protein (MAP) Kinase Backbone and Phosphorylation Loop to MEK Specificity. Journal of Biological Chemistry, 1996, 271, 29734-29739.	1.6	64
81	Crystal Structure of the TAO2 Kinase Domain. Structure, 2004, 12, 1891-1900.	1.6	64
82	Extracellular signal-regulated kinases in T cells: Characterization of human ERK1 and ERK2 cDNAs. Biochemical and Biophysical Research Communications, 1992, 182, 1416-1422.	1.0	63
83	Menin determines K-RAS proliferative outputs in endocrine cells. Journal of Clinical Investigation, 2014, 124, 4093-4101.	3.9	63
84	The MEK1 Proline-rich Insert Is Required for Efficient Activation of the Mitogen-activated Protein Kinases ERK1 and ERK2 in Mammalian Cells. Journal of Biological Chemistry, 1998, 273, 19909-19913.	1.6	62
85	G protein-coupled receptors and the regulation of autophagy. Trends in Endocrinology and Metabolism, 2014, 25, 274-282.	3.1	62
86	Identification of an Activator of the Microtubule-Associated Protein 2 Kinases ERK1 and ERK2 in PC12 Cells Stimulated with Nerve Growth Factor or Bradykinin. Journal of Neurochemistry, 1992, 59, 147-156.	2.1	59
87	Phosphorylation of MAP Kinases by MAP/ERK Involves Multiple Regions of MAP Kinases. Journal of Biological Chemistry, 1999, 274, 16988-16994.	1.6	58
88	Reciprocal Signaling between Heterotrimeric G Proteins and the p21-stimulated Protein Kinase. Journal of Biological Chemistry, 1999, 274, 31641-31647.	1.6	58
89	Biological Cross-talk between WNK1 and the Transforming Growth Factor β-Smad Signaling Pathway. Journal of Biological Chemistry, 2007, 282, 17985-17996.	1.6	57
90	Crystal structure of domainâ€swapped STE20 OSR1 kinase domain. Protein Science, 2009, 18, 304-313.	3.1	57

#	Article	IF	Citations
91	Catalytic Reaction Pathway for the Mitogen-Activated Protein Kinase ERK2. Biochemistry, 2000, 39, 6258-6266.	1.2	56
92	Lipopolysaccharide-induced Tumor Necrosis Factor-α Promoter Activity Is Inhibitor of Nuclear Factor-κB Kinase-dependent. Journal of Biological Chemistry, 1999, 274, 11667-11671.	1.6	55
93	Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism. Journal of Biological Chemistry, 2016, 291, 22414-22426.	1.6	55
94	WNK1: analysis of protein kinase structure, downstream targets, and potential roles in hypertension. Cell Research, 2005, 15, 6-10.	5.7	54
95	The MAP kinase ERK5 binds to and phosphorylates p90 RSK. Archives of Biochemistry and Biophysics, 2006, 449, 8-16.	1.4	52
96	Mutations in ERK2 Binding Sites Affect Nuclear Entry. Journal of Biological Chemistry, 2007, 282, 28759-28767.	1.6	52
97	Rasip1-Mediated Rho GTPase Signaling Regulates Blood Vessel Tubulogenesis via Nonmuscle Myosin II. Circulation Research, 2016, 119, 810-826.	2.0	51
98	Actions of the protein kinase WNK1 on endothelial cells are differentially mediated by its substrate kinases OSR1 and SPAK. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15999-16004.	3.3	50
99	Mxi2 promotes stimulus-independent ERK nuclear translocation. EMBO Journal, 2007, 26, 635-646.	3.5	48
100	WNK pathways in cancer signaling networks. Cell Communication and Signaling, 2018, 16, 72.	2.7	47
101	Binding of JNK/SAPK to MEKK1 Is Regulated by Phosphorylation. Journal of Biological Chemistry, 2002, 277, 45785-45792.	1.6	46
102	The Mitogen-Activated Protein Kinase p38-2 Is Necessary for the Inhibition of N-Type Calcium Current by Bradykinin. Journal of Neuroscience, 1998, 18, 112-118.	1.7	45
103	TAO (Thousand-and-one Amino Acid) Protein Kinases Mediate Signaling from Carbachol to p38 Mitogen-activated Protein Kinase and Ternary Complex Factors. Journal of Biological Chemistry, 2003, 278, 22278-22283.	1.6	45
104	WNKs: protein kinases with a unique kinase domain. Experimental and Molecular Medicine, 2007, 39, 565-573.	3.2	45
105	Signal control through Raf: in sickness and in health. Cell Research, 2012, 22, 14-22.	5.7	45
106	Chromatin-tethered MAPKs. Current Opinion in Cell Biology, 2013, 25, 272-277.	2.6	45
107	Differential Regulation of Mitogen-Activated Protein/ERK Kinase (MEK)1 and MEK2 and Activation by a Ras-Independent Mechanism. Molecular Endocrinology, 1997, 11, 1618-1625.	3.7	44
108	WNK1 is required for mitosis and abscission. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1385-1390.	3.3	43

#	Article	IF	Citations
109	Role of with-no-lysine [K] kinases in the pathogenesis of Gordon's syndrome. Pediatric Nephrology, 2006, 21, 1231-1236.	0.9	41
110	The Nuclear Localization of ERK2 Occurs by Mechanisms Both Independent of and Dependent on Energy. Journal of Biological Chemistry, 2006, 281, 15645-15652.	1.6	41
111	Calcineurin increases glucose activation of ERK1/2 by reversing negative feedback. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22314-22319.	3.3	41
112	A small molecule differentiation inducer increases insulin production by pancreatic \hat{l}^2 cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20713-20718.	3.3	40
113	p115 Rho GTPase activating protein interacts with MEKK1. Journal of Cellular Physiology, 2002, 192, 200-208.	2.0	39
114	Inhibition of Glucose-Stimulated Activation of Extracellular Signal-Regulated Protein Kinases 1 and 2 by Epinephrine in Pancreatic Â-Cells. Diabetes, 2006, 55, 1066-1073.	0.3	39
115	Insulin Promoter-Driven $\langle i \rangle$ Gaussia $\langle i \rangle$ Luciferase-Based Insulin Secretion Biosensor Assay for Discovery of \hat{l}^2 -Cell Glucose-Sensing Pathways. ACS Sensors, 2016, 1, 1208-1212.	4.0	39
116	Characterization of a Protein Kinase that Phosphorylates Serine 189 of the Mitogen-activated Protein Kinase Homolog ERK3. Journal of Biological Chemistry, 1996, 271, 12057-12062.	1.6	38
117	Multistep regulation of autophagy by WNK1. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14342-14347.	3.3	37
118	Off-Target Effects of MEK Inhibitors. Biochemistry, 2013, 52, 5164-5166.	1.2	36
119	Isoxazole Alters Metabolites and Gene Expression, Decreasing Proliferation and Promoting a Neuroendocrine Phenotype in \hat{I}^2 -Cells. ACS Chemical Biology, 2016, 11, 1128-1136.	1.6	36
120	Cyclic AMP Selectively Uncouples Mitogen-Activated Protein Kinase Cascades from Activating Signals. Molecular and Cellular Biology, 2006, 26, 3039-3047.	1.1	33
121	Sumoylation Regulates the Transcriptional Activity of MafA in Pancreatic \hat{l}^2 Cells. Journal of Biological Chemistry, 2009, 284, 3117-3124.	1.6	33
122	Crystallization and Preliminary X-ray Studies of Extracellular Signal-regulated Kinase-2/MAP Kinase with an Incorporated His-tag. Journal of Molecular Biology, 1993, 233, 550-552.	2.0	32
123	Amino acid regulation of autophagy through the GPCR TAS1R1-TAS1R3. Autophagy, 2013, 9, 418-419.	4.3	32
124	The Structure of the MAP2K MEK6 Reveals an Autoinhibitory Dimer. Structure, 2009, 17, 96-104.	1.6	31
125	Differential abundance of CK1 \hat{l} ± provides selectivity for pharmacological CK1 \hat{l} ± activators to target WNT-dependent tumors. Science Signaling, 2017, 10, .	1.6	31
126	Characterization of Mitogen-Activated Protein Kinase (MAPK) Dimersâ€. Biochemistry, 2006, 45, 13175-13182.	1.2	30

#	Article	IF	CITATIONS
127	Differential regulation of CHOP-10/GADD153 gene expression by MAPK signaling in pancreatic \hat{l}^2 -cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11518-11525.	3.3	30
128	Multiple chromatin-bound protein kinases assemble factors that regulate insulin gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22181-22186.	3.3	30
129	Radial Spoke Protein 3 Is a Mammalian Protein Kinase A-anchoring Protein That Binds ERK1/2. Journal of Biological Chemistry, 2009, 284, 29437-29445.	1.6	30
130	WNK1 Is a Novel Regulator of Munc18c-Syntaxin 4 Complex Formation in Soluble NSF Attachment Protein Receptor (SNARE)-mediated Vesicle Exocytosis. Journal of Biological Chemistry, 2007, 282, 32613-32622.	1.6	29
131	Regulation of a Third Conserved Phosphorylation Site in SGK1. Journal of Biological Chemistry, 2009, 284, 3453-3460.	1.6	29
132	WNK1 is an unexpected autophagy inhibitor. Autophagy, 2017, 13, 969-970.	4.3	28
133	Regulation of OSR1 and the sodium, potassium, two chloride cotransporter by convergent signals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18826-18831.	3.3	27
134	Chemoattractant concentration–dependent tuning of ERK signaling dynamics in migrating neutrophils. Science Signaling, 2016, 9, ra122.	1.6	26
135	Subtype-specific secretomic characterization of pulmonary neuroendocrine tumor cells. Nature Communications, 2019, 10, 3201.	5. 8	26
136	MAP kinases and their roles in pancreatic \hat{l}^2 -cells. Cell Biochemistry and Biophysics, 2004, 40, 191-200.	0.9	25
137	Structural Analysis of the MAP Kinase ERK2 and Studies of MAP Kinase Regulatory Pathways. Advances in Pharmacology, 1996, 36, 49-65.	1.2	24
138	The Transcriptional ETS2 Repressor Factor Associates with Active and Inactive Erks through Distinct FXF Motifs. Journal of Biological Chemistry, 2006, 281, 25601-25611.	1.6	24
139	TGF-Î ² Regulation by Emilin1: New Links in the Etiology of Hypertension. Cell, 2006, 124, 893-895.	13.5	23
140	Functional divergence caused by mutations in an energetic hotspot in ERK2. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15514-15523.	3.3	23
141	Bacterial expression of activated mitogen-activated protein kinases. Methods in Enzymology, 2001, 332, 387-400.	0.4	22
142	Interactions with WNK (With No Lysine) Family Members Regulate Oxidative Stress Response 1 and Ion Co-transporter Activity. Journal of Biological Chemistry, 2012, 287, 37868-37879.	1.6	21
143	Hypertension: the missing WNKs. American Journal of Physiology - Renal Physiology, 2016, 311, F16-F27.	1.3	20
144	WNK1 Enhances Migration and Invasion in Breast Cancer Models. Molecular Cancer Therapeutics, 2021, 20, 1800-1808.	1.9	20

#	Article	IF	CITATIONS
145	Protein kinase WNK3 regulates the neuronal splicing factor Fox-1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16841-16846.	3.3	19
146	Domain-Swapping Switch Point in Ste20 Protein Kinase SPAK. Biochemistry, 2015, 54, 5063-5071.	1.2	19
147	The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology, 2021, 162,	1.4	18
148	The insulin receptor and tyrosine protein kinase activity. Biochimica Et Biophysica Acta: Reviews on Cancer, 1984, 738, 1-8.	3.3	17
149	Cell Condition-dependent Regulation of ERK5 by cAMP. Journal of Biological Chemistry, 2002, 277, 48094-48098.	1.6	17
150	Structure of MAPKs. , 2004, 250, 127-144.		17
151	Regulation of CCAAT/Enhancer-binding Protein Homologous Protein (CHOP) Expression by Interleukin- $\hat{l^2}$ in Pancreatic $\hat{l^2}$ Cells. Journal of Biological Chemistry, 2010, 285, 19710-19719.	1.6	17
152	OSR1 regulates a subset of inward rectifier potassium channels via a binding motif variant. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3840-3845.	3.3	17
153	Differential Regulation of ERK1/2 and mTORC1 Through T1R1/T1R3 in MIN6 Cells. Molecular Endocrinology, 2015, 29, 1114-1122.	3.7	16
154	Sucralose activates an ERK1/2–ribosomal protein S6 signaling axis. FEBS Open Bio, 2017, 7, 174-186.	1.0	15
155	MAP Kinases and Their Roles in Pancreatic β-Cells. Cell Biochemistry and Biophysics, 2004, 40, 191-200.	0.9	15
156	The Epithelial Sodium Channel (αENaC) Is a Downstream Therapeutic Target of ASCL1 in Pulmonary Neuroendocrine Tumors. Translational Oncology, 2018, 11, 292-299.	1.7	14
157	A similar ribosomal protein S6 kinase activity is found in insulin-treated 3T3-L1 cells and chick embryo fibroblasts transformed by Rous sarcoma virus. Biochemical and Biophysical Research Communications, 1986, 137, 702-708.	1.0	13
158	NeuroD1 mediates nicotine-induced migration and invasion via regulation of the nicotinic acetylcholine receptor subunits in a subset of neural and neuroendocrine carcinomas. Molecular Biology of the Cell, 2014, 25, 1782-1792.	0.9	13
159	kin-18, a C. elegans protein kinase involved in feeding. Gene, 2001, 279, 137-147.	1.0	12
160	Different Domains of the Mitogen-activated Protein Kinases ERK3 and ERK2 Direct Subcellular Localization and Upstream Specificityin Vivo. Journal of Biological Chemistry, 2002, 277, 5094-5100.	1.6	12
161	Context-dependent regulation of NeuroD activity and protein accumulation. Molecular and Cellular Neurosciences, 2005, 28, 727-736.	1.0	12
162	WNK kinases and blood pressure control. Current Hypertension Reports, 2009, 11, 421-426.	1.5	12

#	Article	IF	Citations
163	Phosphorylation or Mutation of the ERK2 Activation Loop Alters Oligonucleotide Binding. Biochemistry, 2016, 55, 1909-1917.	1.2	12
164	Irreversible inhibition of sodium transport by the toad urinary bladder following photolysis of amiloride analogs. Experientia, 1981, 37, 68-69.	1.2	11
165	Ras transformation uncouples the kinesin-coordinated cellular nutrient response. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10568-10573.	3.3	11
166	Expression and characterization of MAP kinases in bacteria. Methods, 2006, 40, 209-212.	1.9	10
167	The CK1α Activator Pyrvinium Enhances the Catalytic Efficiency (<i>k</i> _{cat} / <i>K</i> _m) of CK1α. Biochemistry, 2019, 58, 5102-5106.	1.2	10
168	Assaying Protein Kinase Activity with Radiolabeled ATP. Journal of Visualized Experiments, 2017, , .	0.2	9
169	Chromomycin A2 potently inhibits glucose-stimulated insulin secretion from pancreatic \hat{l}^2 cells. Journal of General Physiology, 2018, 150, 1747-1757.	0.9	9
170	MAP-ping Unconventional Protein-DNA Interactions. Cell, 2009, 139, 462-463.	13.5	7
171	Muscarinic Control of MIN6 Pancreatic \hat{l}^2 Cells Is Enhanced by Impaired Amino Acid Signaling. Journal of Biological Chemistry, 2014, 289, 14370-14379.	1.6	7
172	Catalytic Reaction Pathway for the Mitogen-Activated Protein Kinase ERK2. Biochemistry, 2000, 39, 14002-14002.	1.2	6
173	MAP kinases and their roles in pancreatic \hat{l}^2 -cells. Cell Biochemistry and Biophysics, 2004, 2004, 191-200.	0.9	6
174	Mineralocorticoid-induced membrane proteins in MDCK cells. Molecular and Cellular Endocrinology, 1982, 27, 129-137.	1.6	5
175	Activation of MEKK1 by Rho GTPases. Methods in Enzymology, 2006, 406, 468-478.	0.4	5
176	Pulling a MAST1 on Cisplatin Resistance. Cancer Cell, 2018, 34, 183-185.	7.7	5
177	Control of Podocyte and Glomerular Capillary Wall Structure and Elasticity by WNK1 Kinase. Frontiers in Cell and Developmental Biology, 2020, 8, 618898.	1.8	5
178	Rare pathogenic variants in WNK3 cause X-linked intellectual disability. Genetics in Medicine, 2022, 24, 1941-1951.	1.1	5
179	Effects of Insulin on Ribonucleic Acid Synthesis in Toad Urinary Bladder*. Endocrinology, 1981, 109, 2167-2174.	1.4	4
180	Insulin-stimulated sodium transport in toad urinary bladder. Biochimica Et Biophysica Acta - Biomembranes, 1986, 856, 123-129.	1.4	4

#	Article	lF	Citations
181	Measuring Relative Insulin Secretion using a Co-Secreted Luciferase Surrogate. Journal of Visualized Experiments, 2019, , .	0.2	4
182	$\hat{l}\pm 2$ -Adrenergic Disruption of \hat{l}^2 Cell BDNF-TrkB Receptor Tyrosine Kinase Signaling. Frontiers in Cell and Developmental Biology, 2020, 8, 576396.	1.8	4
183	Reconstitution of the Nuclear Transport of the MAP Kinase ERK2. Methods in Molecular Biology, 2010, 661, 273-285.	0.4	4
184	Cholesterol Regulates the Tumor Adaptive Resistance to MAPK Pathway Inhibition. Journal of Proteome Research, 2021, 20, 5379-5391.	1.8	4
185	CCT and CCT-like Modular Protein Interaction Domains in WNK Signaling. Molecular Pharmacology, 2021, , MOLPHARM-MR-2021-000307.	1.0	3
186	Effect of glutathione on cyclic nucleotide levels in hydra attenuata. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1980, 65, 111-115.	0.2	2
187	INSULIN-INDUCED ALTERATIONS IN THE LACTOPEROXIDASE-CATALYZED RADIOIODINATION OF MEMBRANE PROTEINS OF THE TOAD BLADDER EPITHELIUM. Endocrinology, 1981, 109, 1775-1777.	1.4	2
188	A comparison of protein synthetic patterns of MDCK cells grown in serum and hormonally defined serum-free medium. Journal of Cellular Physiology, 1985, 123, 126-131.	2.0	2
189	ERKs Weigh in on Ribosome Mass. Molecular Cell, 2001, 8, 932-933.	4.5	2
190	Exposing Contingency Plans for Kinase Networks. Cell, 2010, 143, 867-869.	13.5	2
191	A Kinase Divided. Cancer Cell, 2015, 28, 145-147.	7.7	2
192	Small Molecule-mediated Insulin Hypersecretion Induces Transient ER Stress Response and Loss of Beta Cell Function. Endocrinology, 2022, 163, .	1.4	2
193	WNK1 in Malignant Behaviors: A Potential Target for Cancer?. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	2
194	Nuclear speckle integrity and function require TAO2 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	2
195	<scp>ERK</scp> 5 signaling gets <scp>XIAP</scp> ed: a role for ubiquitin in the disassembly of a <scp>MAPK</scp> cascade. EMBO Journal, 2014, 33, 1735-1736.	3.5	1
196	Correction to Insulin Promoter-Driven $\langle i \rangle$ Gaussia $\langle i \rangle$ Luciferase-Based Insulin Secretion Biosensor Assay for Discovery of \hat{l}^2 -Cell Glucose-Sensing Pathways. ACS Sensors, 2017, 2, 316-316.	4.0	1
197	MEKK1 interacts with αâ€actinin and localizes to stress fibers and focal adhesions. Cytoskeleton, 1999, 43, 186-198.	4.4	1
198	UBR5 is a novel regulator of WNK1 stability. American Journal of Physiology - Cell Physiology, 2022, , .	2.1	1

#	Article	IF	CITATIONS
199	Beth Levine M.D. Prize in Autophagy Research. Autophagy, 2021, 17, 2053-2053.	4.3	О
200	Kinases in Diabetes and Hypertension. FASEB Journal, 2008, 22, 102.3.	0.2	0
201	Cilia and mitogenâ€activated protein kinase signaling. FASEB Journal, 2008, 22, 1052.2.	0.2	O
202	Regulation of the DNAâ€binding protein CFP1 by ERK1/2. FASEB Journal, 2013, 27, 981.9.	0.2	0
203	ERKonomics: MAPK assets and liabilities. FASEB Journal, 2013, 27, 322.1.	0.2	O
204	Erk3., 1995,, 217-218.		0
205	Erk1/2., 1995,, 214-216.		О