Pierre Bénard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7580004/publications.pdf

Version: 2024-02-01

23 papers

1,455 citations

759233 12 h-index 642732 23 g-index

23 all docs 23 docs citations

 $\begin{array}{c} 23 \\ times \ ranked \end{array}$

1471 citing authors

#	Article	IF	CITATIONS
1	Krylov solvers in a verticalâ€slice version of the semiâ€implicit semiâ€Lagrangian AROME model. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 1497-1515.	2.7	1
2	Stability of Rossby–Haurwitz waves. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 613-628.	2.7	2
3	Semiâ€implicit integration of the unified equations in a massâ€based coordinate: model formulation and numerical testing. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 3387-3408.	2.7	4
4	Circumventing the pole problem of reduced lat–lon grids with local schemes. Part I: Analysis and model formulation. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 1377-1391.	2.7	5
5	Circumventing the pole problem of reduced latâ€lon grids with local schemes. Part II: Validation experiments. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 1392-1405.	2.7	2
6	Numerical investigation of Rossby waves for nonlinear shallowâ€water equations on the sphere. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 1461-1473.	2.7	2
7	The ESCAPE project: Energy-efficient Scalable Algorithms for Weather Prediction at Exascale. Geoscientific Model Development, 2019, 12, 4425-4441.	3.6	19
8	The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1. Geoscientific Model Development, 2018, 11, 257-281.	3.6	133
9	RKâ€IMEX HEVI schemes for fully compressible atmospheric models with advection: analyses and numerical testing. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1336-1350.	2.7	4
10	An assessment of global forecast errors due to the spherical geopotential approximation in the shallowâ€water case. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 195-206.	2.7	13
11	An oblateâ€spheroid geopotential approximation for global meteorology. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 170-184.	2.7	9
12	The AROME-France Convective-Scale Operational Model. Monthly Weather Review, 2011, 139, 976-991.	1.4	709
13	Dynamical kernel of the Aladin–NH spectral limitedâ€area model: Revised formulation and sensitivity experiments. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 155-169.	2.7	105
14	Flux-conservative thermodynamic equations in a mass-weighted framework. Tellus, Series A: Dynamic Meteorology and Oceanography, 2007, 59, 71-79.	1.7	35
15	Stability of Leapfrog Constant-Coefficients Semi-Implicit Schemes for the Fully Elastic System of Euler Equations: Case with Orography. Monthly Weather Review, 2005, 133, 1065-1075.	1.4	12
16	On the Use of a Wider Class of Linear Systems for the Design of Constant-Coefficients Semi-Implicit Time Schemes in NWP. Monthly Weather Review, 2004, 132, 1319-1324.	1.4	17
17	Stability of Leapfrog Constant-Coefficients Semi-Implicit Schemes for the Fully Elastic System of Euler Equations: Flat-Terrain Case. Monthly Weather Review, 2004, 132, 1306-1318.	1.4	16
18	Stability of Semi-Implicit and Iterative Centered-Implicit Time Discretizations for Various Equation Systems Used in NWP. Monthly Weather Review, 2003, 131, 2479-2491.	1.4	41

#	Article	IF	CITATIONS
19	A refined semi-Lagrangian vertical trajectory scheme applied to a hydrostatic atmospheric model. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 323-336.	2.7	3
20	Stabilization of Nonlinear Vertical Diffusion Schemes in the Context of NWP Models. Monthly Weather Review, 2000, 128, 1937-1948.	1.4	19
21	Introduction of a local mapping factor in the spectral part of the Météo-France global variable mesh numerical forecast model. Quarterly Journal of the Royal Meteorological Society, 1996, 122, 1701-1719.	2.7	21
22	Introduction of a local mapping factor in the spectral part of the Meteo-France global variable mesh numerical forecast model. Quarterly Journal of the Royal Meteorological Society, 1996, 122, 1701-1719.	2.7	8
23	Integration of the Fully Elastic Equations Cast in the Hydrostatic Pressure Terrain-Following Coordinate in the Framework of the ARPEGE/Aladin NWP System. Monthly Weather Review, 1995, 123, 515-535.	1.4	275