James E Hudson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7579737/publications.pdf

Version: 2024-02-01

		201575	161767
58	5,280	27	54
papers	citations	h-index	g-index
70	70	70	7057
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A cell culture platform for quantifying metabolic substrate oxidation in bicarbonate-buffered medium. Journal of Biological Chemistry, 2022, 298, 101547.	1.6	1
2	Integrated Glycoproteomics Identifies a Role of N-Glycosylation and Galectin-1 on Myogenesis and Muscle Development. Molecular and Cellular Proteomics, 2021, 20, 100030.	2.5	31
3	BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell, 2021, 184, 2167-2182.e22.	13.5	131
4	Sex-Specific Control of Human Heart Maturation by the Progesterone Receptor. Circulation, 2021, 143, 1614-1628.	1.6	42
5	Loss of the long non-coding RNA OIP5-AS1 exacerbates heart failure in a sex-specific manner. IScience, 2021, 24, 102537.	1.9	12
6	Chalconeâ€Supported Cardiac Mesoderm Induction in Human Pluripotent Stem Cells for Heart Muscle Engineering. ChemMedChem, 2021, 16, 3300-3305.	1.6	3
7	Therapeutic Inhibition of Acid-Sensing Ion Channel 1a Recovers Heart Function After Ischemia–Reperfusion Injury. Circulation, 2021, 144, 947-960.	1.6	40
8	Collagen polarization promotes epithelial elongation by stimulating locoregional cell proliferation. ELife, 2021, 10, .	2.8	7
9	Integrating single-cell genomics pipelines to discover mechanisms of stem cell differentiation. Trends in Molecular Medicine, 2021, 27, 1135-1158.	3.5	8
10	Cep55 regulation of PI3K/Akt signaling is required for neocortical development and ciliogenesis. PLoS Genetics, 2021, 17, e1009334.	1.5	4
11	Platelet-derived growth factor-AB improves scar mechanics and vascularity after myocardial infarction. Science Translational Medicine, 2020, 12, .	5.8	37
12	Centrosome Reduction Promotes Terminal Differentiation of Human Cardiomyocytes. Stem Cell Reports, 2020, 15, 817-826.	2.3	7
13	Developmental GABA polarity switch and neuronal plasticity in Bioengineered Neuronal Organoids. Nature Communications, 2020, 11, 3791.	5.8	77
14	\hat{l}^2 -catenin drives distinct transcriptional networks in proliferative and non-proliferative cardiomyocytes. Development (Cambridge), 2020, 147, .	1,2	24
15	There's No I in Team: Cellular Crosstalk Enhances InÂVitro Cardiac Maturation. Cell Stem Cell, 2020, 26, 799-801.	5.2	0
16	Metabolic Regulation of Human Pluripotent Stem Cell-Derived Cardiomyocyte Maturation. Current Cardiology Reports, 2020, 22, 73.	1.3	13
17	Neutrophil-Derived S100A8/A9 Amplify Granulopoiesis After Myocardial Infarction. Circulation, 2020, 141, 1080-1094.	1.6	155
18	Reactivation of Myc transcription in the mouse heart unlocks its proliferative capacity. Nature Communications, 2020, 11, 1827.	5.8	38

#	Article	IF	Citations
19	An in vitro model of myocardial infarction. Nature Biomedical Engineering, 2020, 4, 366-367.	11.6	7
20	Enhanced cardiac repair by telomerase reverse transcriptase over-expression in human cardiac mesenchymal stromal cells. Scientific Reports, 2019, 9, 10579.	1.6	21
21	The role of cardiac transcription factor NKX2-5 in regulating the human cardiac miRNAome. Scientific Reports, 2019, 9, 15928.	1.6	3
22	Vegfc/d-dependent regulation of the lymphatic vasculature during cardiac regeneration is influenced by injury context. Npj Regenerative Medicine, 2019, 4, 18.	2 . 5	37
23	Bioengineering adult human heart tissue: How close are we?. APL Bioengineering, 2019, 3, 010901.	3.3	43
24	Drug Screening in Human PSC-Cardiac Organoids Identifies Pro-proliferative Compounds Acting via the Mevalonate Pathway. Cell Stem Cell, 2019, 24, 895-907.e6.	5.2	199
25	Development of a human skeletal micro muscle platform with pacing capabilities. Biomaterials, 2019, 198, 217-227.	5.7	38
26	NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nature Communications, 2018, 9, 1373.	5. 8	77
27	Disease modeling and functional screening using engineered heart tissue. Current Opinion in Physiology, 2018, 1, 80-88.	0.9	17
28	Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. Cell Stem Cell, 2018, 23, 586-598.e8.	5.2	215
29	TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets. BMC Genomics, 2018, 19, 238.	1.2	12
30	Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation, 2017, 135, 1832-1847.	1.6	462
31	Development of a human cardiac organoid injury model reveals innate regenerative potential. Development (Cambridge), 2017, 144, 1118-1127.	1.2	127
32	Periostin paves the way for neonatal heart regeneration. Cardiovascular Research, 2017, 113, 556-558.	1.8	6
33	Cavin-1 deficiency modifies myocardial and coronary function, stretch responses and ischaemic tolerance: roles of NOS over-activity. Basic Research in Cardiology, 2017, 112, 24.	2.5	15
34	FunSel. Circulation, 2017, 136, 1525-1527.	1.6	0
35	Cryoinjury Model for Tissue Injury and Repair in Bioengineered Human Striated Muscle. Methods in Molecular Biology, 2017, 1668, 209-224.	0.4	7
36	Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8372-E8381.	3.3	361

#	Article	IF	Citations
37	Multicellular Transcriptional Analysis of Mammalian Heart Regeneration. Circulation, 2017, 136, 1123-1139.	1.6	222
38	Evolution, comparative biology and ontogeny of vertebrate heart regeneration. Npj Regenerative Medicine, 2016, 1, 16012.	2.5	109
39	Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays. Scientific Reports, 2016, 6, 24637.	1.6	53
40	Resetting the epigenome for heart regeneration Seminars in Cell and Developmental Biology, 2016, 58, 2-13.	2.3	18
41	Dynamic changes in the cardiac methylome during postnatal development. FASEB Journal, 2015, 29, 1329-1343.	0.2	56
42	Isolation of Contractile Cardiomyocytes from Human Pluripotent Stem-Cell-Derived Cardiomyogenic Cultures Using a Human <i>NCX1-EGFP</i> Reporter. Stem Cells and Development, 2015, 24, 11-20.	1.1	16
43	The Non-coding Road Towards Cardiac Regeneration. Journal of Cardiovascular Translational Research, 2013, 6, 909-923.	1.1	10
44	The Cardiogenic Niche as a Fundamental Building Block of Engineered Myocardium. Cells Tissues Organs, 2012, 195, 82-93.	1.3	24
45	Microbioreactor Arrays for Full Factorial Screening of Exogenous and Paracrine Factors in Human Embryonic Stem Cell Differentiation. PLoS ONE, 2012, 7, e52405.	1.1	47
46	Tailored Integrin–Extracellular Matrix Interactions to Direct Human Mesenchymal Stem Cell Differentiation. Stem Cells and Development, 2012, 21, 2442-2456.	1.1	157
47	Primitive Cardiac Cells from Human Embryonic Stem Cells. Stem Cells and Development, 2012, 21, 1513-1523.	1.1	79
48	A Defined Medium and Substrate for Expansion of Human Mesenchymal Stromal Cell Progenitors That Enriches for Osteo- and Chondrogenic Precursors. Stem Cells and Development, 2011, 20, 77-87.	1.1	38
49	Tuning Wnt-signaling to enhance cardiomyogenesis in human embryonic and induced pluripotent stem cells. Journal of Molecular and Cellular Cardiology, 2011, 51, 277-279.	0.9	12
50	Effect of Geometric Challenges on Cell Migration. Tissue Engineering - Part C: Methods, 2011, 17, 999-1010.	1.1	18
51	Development of Myocardial Constructs Using Modulus-Matched Acrylated Polypropylene Glycol Triol Substrate and Different Nonmyocyte Cell Populations. Tissue Engineering - Part A, 2011, 17, 2279-2289.	1.6	9
52	Enhanced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells in Low Oxygen Environment Micropellet Cultures. Cell Transplantation, 2010, 19, 29-42.	1.2	197
53	A synthetic elastomer based on acrylated polypropylene glycol triol with tunable modulus for tissue engineering applications. Biomaterials, 2010, 31, 7937-7947.	5.7	16
54	From scrawny to brawny: the quest for neomusculogenesis; smart surfaces and scaffolds for muscle tissue engineering. Expert Review of Medical Devices, 2007, 4, 709-728.	1.4	12

#	Article	IF	CITATIONS
55	The Transcriptional Program in the Response of Human Fibroblasts to Serum. Science, 1999, 283, 83-87.	6.0	1,895
56	Directed Self-Organization of Human and Non-Human Primate Heart Muscle Organoids from Pluripotent Stem Cells. SSRN Electronic Journal, 0, , .	0.4	1
57	Cardiac Directed Differentiation Using Small Molecule WNT Modulation at Single-Cell Resolution. SSRN Electronic Journal, 0, , .	0.4	0
58	Bromodomain Inhibition Blocks Inflammation-Induced Cardiac Dysfunction and SARS-CoV2 Infection. SSRN Electronic Journal, 0, , .	0.4	O