
Francisco Ciruela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7579454/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Remote local photoactivation of morphine produces analgesia without opioidâ€related adverse effects. British Journal of Pharmacology, 2023, 180, 958-974.	2.7	15
2	Influence of sex on intracellular calcium homoeostasis in patients with atrial fibrillation. Cardiovascular Research, 2022, 118, 1033-1045.	1.8	19
3	G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs). , 2022, 231, 107977.		28
4	Overcoming the Challenges of Detecting GPCR Oligomerization in the Brain. Current Neuropharmacology, 2022, 20, 1035-1045.	1.4	7
5	Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome. Molecules, 2022, 27, 1489.	1.7	11
6	Cathepsin D interacts with adenosine A2A receptors in mouse macrophages to modulate cell surface localization and inflammatory signaling. Journal of Biological Chemistry, 2022, 298, 101888.	1.6	4
7	Optical Control of Adenosine A3 Receptor Signaling: Towards a Multimodal Phototherapy in Psoriasis?. Frontiers in Immunology, 2022, 13, 904762.	2.2	2
8	The mGlu5 Receptor Protomer-Mediated Dopamine D2 Receptor Trans-Inhibition Is Dependent on the Adenosine A2A Receptor Protomer: Implications for Parkinson's Disease. Molecular Neurobiology, 2022, 59, 5955-5969.	1.9	3
9	Disease-associated GRIN protein truncating variants trigger NMDA receptor loss-of-function. Human Molecular Genetics, 2021, 29, 3859-3871.	1.4	16
10	Functional Interplay of Type-2 Corticotrophin Releasing Factor and Dopamine Receptors in the Basolateral Amygdala-Medial Prefrontal Cortex Circuitry. International Journal of Neuropsychopharmacology, 2021, 24, 221-228.	1.0	4
11	Decreased striatal adenosine A2A-dopamine D2 receptor heteromerization in schizophrenia. Neuropsychopharmacology, 2021, 46, 665-672.	2.8	24
12	Study of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity Ligation Assay. Neuromethods, 2021, , 117-134.	0.2	4
13	Monitoring GPCR-Mediated cAMP Accumulation in Rat Striatal Synaptosomes. Neuromethods, 2021, , 531-540.	0.2	0
14	Optical Control of Brain Receptors Using Photoactive Drugs in Behaving Animals. Neuromethods, 2021, , 513-522.	0.2	0
15	Amplified Luminescent Proximity Homogeneous Assay (Alpha)-Based Technique to Detect GPCR Oligomers in Human Postmortem Brain. Neuromethods, 2021, , 135-142.	0.2	0
16	GPCR-Mediated MAPK/ERK Cascade Activation in Mouse Striatal Slices. Neuromethods, 2021, , 541-549.	0.2	0
17	Ecto-GPR37: a potential biomarker for Parkinson's disease. Translational Neurodegeneration, 2021, 10, 8.	3.6	19
18	Adenosine A2A Receptors Are Upregulated in Peripheral Blood Mononuclear Cells from Atrial Fibrillation Patients. International Journal of Molecular Sciences, 2021, 22, 3467.	1.8	12

#	Article	IF	CITATIONS
19	Investigating the Role of Guanosine on Human Neuroblastoma Cell Differentiation and the Underlying Molecular Mechanisms. Frontiers in Pharmacology, 2021, 12, 658806.	1.6	6
20	GPR37 is processed in the Nâ€ŧerminal ectodomain by ADAM10 and furin. FASEB Journal, 2021, 35, e21654.	0.2	11
21	Prevalence of SARS-CoV-2 Infection at the University of Barcelona during the Third COVID-19 Pandemic Wave in Spain. International Journal of Environmental Research and Public Health, 2021, 18, 6526.	1.2	2
22	Identification of the GlialCAM interactome: the G protein-coupled receptors GPRC5B and GPR37L1 modulate megalencephalic leukoencephalopathy proteins. Human Molecular Genetics, 2021, 30, 1649-1665.	1.4	12
23	Optical Control of Adenosine-Mediated Pain Modulation. Bioconjugate Chemistry, 2021, 32, 1979-1983.	1.8	8
24	Optical control of adenosine A3 receptor function in psoriasis. Pharmacological Research, 2021, 170, 105731.	3.1	7
25	Editorial: "Purinergic Signaling 2020: The State-of-The-Art Commented by the Members of the Italian Purine Club― Frontiers in Pharmacology, 2021, 12, 768923.	1.6	Ο
26	Dopaminergic-cholinergic imbalance in movement disorders: a role for the novel striatal dopamine D ₂ - muscarinic acetylcholine M ₁ receptor heteromer. Neural Regeneration Research, 2021, 16, 1406.	1.6	4
27	Cytosolic GPR37, but not GPR37L1, multimerization and its reversal by Parkin: A live cell imaging study. FASEB Journal, 2021, 35, e22055.	0.2	4
28	Oligomerization of G protein-coupled receptors: Still doubted?. Progress in Molecular Biology and Translational Science, 2020, 169, 297-321.	0.9	20
29	Kainic acid-induced status epilepticus decreases mGlu5 receptor and phase-specifically downregulates Homer1b/c expression. Brain Research, 2020, 1730, 146640.	1.1	6
30	Inhibitory Control of Basolateral Amygdalar Transmission to the Prefrontal Cortex by Local Corticotrophin Type 2 Receptor. International Journal of Neuropsychopharmacology, 2020, 23, 108-116.	1.0	10
31	Inhibition of Tryptophan Hydroxylases and Monoamine Oxidase-A by the Proton Pump Inhibitor, Omeprazole—In Vitro and In Vivo Investigations. Frontiers in Pharmacology, 2020, 11, 593416.	1.6	10
32	Centrally Active Multitarget Anti-Alzheimer Agents Derived from the Antioxidant Lead CR-6. Journal of Medicinal Chemistry, 2020, 63, 9360-9390.	2.9	25
33	Involvement of adenosine A1 and A2A receptors on guanosine-mediated anti-tremor effects in reserpinized mice. Purinergic Signalling, 2020, 16, 379-387.	1.1	9
34	Pharmacological activation of mGlu5 receptors with the positive allosteric modulator VU0360172, modulates thalamic GABAergic transmission. Neuropharmacology, 2020, 178, 108240.	2.0	10
35	Ligand with Two Modes of Interaction with the Dopamine D ₂ Receptor–An Induced-Fit Mechanism of Insurmountable Antagonism. ACS Chemical Neuroscience, 2020, 11, 3130-3143.	1.7	8
36	Guanosine-Mediated Anxiolytic-Like Effect: Interplay with Adenosine A1 and A2A Receptors. International Journal of Molecular Sciences, 2020, 21, 9281.	1.8	13

#	Article	IF	CITATIONS
37	Control of glutamate release by complexes of adenosine and cannabinoid receptors. BMC Biology, 2020, 18, 9.	1.7	51
38	Striatal Dopamine D2-Muscarinic Acetylcholine M1 Receptor–Receptor Interaction in a Model of Movement Disorders. Frontiers in Pharmacology, 2020, 11, 194.	1.6	11
39	Design, Synthesis and Characterization of a New Series of Fluorescent Metabotropic Glutamate Receptor Type 5 Negative Allosteric Modulators. Molecules, 2020, 25, 1532.	1.7	2
40	Revealing Adenosine A2A-Dopamine D2 Receptor Heteromers in Parkinson's Disease Post-Mortem Brain through a New AlphaScreen-Based Assay. International Journal of Molecular Sciences, 2019, 20, 3600.	1.8	40
41	Synthesis, In Vitro Profiling, and In Vivo Efficacy Studies of a New Family of Multitarget Anti-Alzheimer Compounds. Proceedings (mdpi), 2019, 22, .	0.2	Ο
42	Proximity Ligation Assay Image Analysis Protocol: Addressing Receptor-Receptor Interactions. Methods in Molecular Biology, 2019, 2040, 41-50.	0.4	27
43	Functional and Neuroprotective Role of Striatal Adenosine A _{2A} Receptor Heterotetramers. Journal of Caffeine and Adenosine Research, 2019, 9, 89-97.	0.8	26
44	<scp>l</scp> -Serine dietary supplementation is associated with clinical improvement of loss-of-function <i>GRIN2B</i> -related pediatric encephalopathy. Science Signaling, 2019, 12, .	1.6	53
45	Optical Modulation of Metabotropic Glutamate Receptor Type 5 In Vivo Using a Photoactive Drug. Methods in Molecular Biology, 2019, 1947, 351-359.	0.4	4
46	Adenosine A1-A2A Receptor-Receptor Interaction: Contribution to Guanosine-Mediated Effects. Cells, 2019, 8, 1630.	1.8	26
47	Chronic adenosine A _{2A} receptor blockade induces locomotor sensitization and potentiates striatal LTD IN GPR37â€deficient mice. Journal of Neurochemistry, 2019, 148, 796-809.	2.1	10
48	Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Hippocampus: Cannabidiol Blunts Δ9-Tetrahydrocannabinol-Induced Cognitive Impairment. Molecular Neurobiology, 2019, 56, 5382-5391.	1.9	47
49	New ionic targets of 3,3′,5′-triiodothyronine at the plasma membrane of rat Sertoli cells. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 748-759.	1.4	7
50	G protein-coupled receptor 37 (GPR37) emerges as an important modulator of adenosinergic transmission in the striatum. Neural Regeneration Research, 2019, 14, 1912.	1.6	3
51	Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum. Neuropsychopharmacology, 2018, 43, 964-977.	2.8	52
52	Behavioral control by striatal adenosine A _{2A} â€dopamine D ₂ receptor heteromers. Genes, Brain and Behavior, 2018, 17, e12432.	1.1	27
53	Differential association of GABAB receptors with their effector ion channels in Purkinje cells. Brain Structure and Function, 2018, 223, 1565-1587.	1.2	27
54	Antipsychotic-Like Efficacy of Dopamine D2 Receptor-Biased Ligands is Dependent on Adenosine A2A Receptor Expression. Molecular Neurobiology, 2018, 55, 4952-4958.	1.9	28

#	Article	IF	CITATIONS
55	PBF509, an Adenosine A2A Receptor Antagonist With Efficacy in Rodent Models of Movement Disorders. Frontiers in Pharmacology, 2018, 9, 1200.	1.6	18
56	Dopamine receptor heteromers: biasing antipsychotics. Future Medicinal Chemistry, 2018, 10, 2675-2677.	1.1	2
57	SK2 Channels Associate With mGlu1α Receptors and CaV2.1 Channels in Purkinje Cells. Frontiers in Cellular Neuroscience, 2018, 12, 311.	1.8	13
58	Triglyceride Form of Docosahexaenoic Acid Mediates Neuroprotection in Experimental Parkinsonism. Frontiers in Neuroscience, 2018, 12, 604.	1.4	26
59	Neuromodulatory Effects of Guanine-Based Purines in Health and Disease. Frontiers in Cellular Neuroscience, 2018, 12, 376.	1.8	49
60	Essential Control of the Function of the Striatopallidal Neuron by Pre-coupled Complexes of Adenosine A2A-Dopamine D2 Receptor Heterotetramers and Adenylyl Cyclase. Frontiers in Pharmacology, 2018, 9, 243.	1.6	73
61	Pridopidine Reverses Phencyclidine-Induced Memory Impairment. Frontiers in Pharmacology, 2018, 9, 338.	1.6	9
62	Assessing GPCR Dimerization in Living Cells: Comparison of the NanoBiT Assay with Related Bioluminescence- and Fluorescence-Based Approaches. Neuromethods, 2018, , 239-250.	0.2	7
63	Metabotropic glutamate type 5 receptor requires contactin-associated protein 1 to control memory formation. Human Molecular Genetics, 2018, 27, 3528-3541.	1.4	4
64	Functional coupling of GABA _{A/B} receptors and the channel TRPV4 mediates rapid progesterone signaling in the oviduct. Science Signaling, 2018, 11, .	1.6	13
65	Phosphoproteomic Alterations of Ionotropic Glutamate Receptors in the Hippocampus of the Ts65Dn Mouse Model of Down Syndrome. Frontiers in Molecular Neuroscience, 2018, 11, 226.	1.4	4
66	Remote control of movement disorders using a photoactive adenosine A2A receptor antagonist. Journal of Controlled Release, 2018, 283, 135-142.	4.8	31
67	Mechanical Allodynia Assessment in a Murine Neuropathic Pain Model. Bio-protocol, 2018, 8, e2671.	0.2	2
68	Adenosine A2A-dopamine D2 receptor heteromers operate striatal function: impact on Parkinson's disease pharmacotherapeutics. Neural Regeneration Research, 2018, 13, 241.	1.6	6
69	Calcium modulates calmodulin/α-actinin 1 interaction with and agonist-dependent internalization of the adenosine A 2A receptor. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 674-686.	1.9	4
70	Locus coeruleus at asymptomatic early and middle Braak stages of neurofibrillary tangle pathology. Neuropathology and Applied Neurobiology, 2017, 43, 373-392.	1.8	72
71	Novel Properties of LRRC8-Mediated VRAC Currents. Biophysical Journal, 2017, 112, 416a-417a.	0.2	1
72	Systematic protein–protein interaction mapping for clinically relevant human <scp>GPCR</scp> s. Molecular Systems Biology, 2017, 13, 918.	3.2	63

#	Article	IF	CITATIONS
73	Illuminating Phenylazopyridines To Photoswitch Metabotropic Glutamate Receptors: From the Flask to the Animals. ACS Central Science, 2017, 3, 81-91.	5.3	58
74	Parkinson's disease-associated GPR37 receptor regulates cocaine-mediated synaptic depression in corticostriatal synapses. Neuroscience Letters, 2017, 638, 162-166.	1.0	13
75	The Parkinson's disease-associated GPR37 receptor interacts with striatal adenosine A2A receptor controlling its cell surface expression and function in vivo. Scientific Reports, 2017, 7, 9452.	1.6	39
76	Angiotensin II type 1/adenosine A 2A receptor oligomers: a novel target for tardive dyskinesia. Scientific Reports, 2017, 7, 1857.	1.6	11
77	Brain Membrane Fractionation: An Ex Vivo Approach to Assess Subsynaptic Protein Localization. Journal of Visualized Experiments, 2017, , .	0.2	4
78	Double deficiency of Trex2 and DNase1L2 nucleases leads to accumulation of DNA in lingual cornifying keratinocytes without activating inflammatory responses. Scientific Reports, 2017, 7, 11902.	1.6	14
79	Bitopic fluorescent antagonists of the A _{2A} adenosine receptor based on pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine functionalized congeners. MedChemComm, 2017, 8, 1659-1667.	3.5	15
80	Cognitive impairments associated with alterations in synaptic proteins induced by the genetic loss of adenosine A 2A receptors in mice. Neuropharmacology, 2017, 126, 48-57.	2.0	27
81	Exploring Drug-Receptor Interaction Kinetics: Lessons from a Sigma-1 Receptor Transmembrane Biosensor. Frontiers in Pharmacology, 2017, 8, 4.	1.6	2
82	Antiparkinsonian Efficacy of Guanosine in Rodent Models of Movement Disorder. Frontiers in Pharmacology, 2017, 8, 700.	1.6	20
83	Synthesis and Characterization of a New Bivalent Ligand Combining Caffeine and Docosahexaenoic Acid. Molecules, 2017, 22, 366.	1.7	5
84	Adenosine A1-A2A Receptor Heteromer as a Possible Target for Early-Onset Parkinson's Disease. Frontiers in Neuroscience, 2017, 11, 652.	1.4	10
85	Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator. ELife, 2017, 6, .	2.8	48
86	Adenosine Receptors Oligomers in Parkinson's Disease. , 2017, , 215-230.		0
87	Formalin Murine Model of Pain. Bio-protocol, 2017, 7, e2628.	0.2	19
88	The Adenosinergic System in the Neurobiology of Schizophrenia: Prospective Adenosine Receptor–Based Pharmacotherapy. , 2017, , 405-419.		0
89	The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation. Frontiers in Pharmacology, 2016, 7, 158.	1.6	45
90	Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors. Scientific Reports, 2016, 6, 19839.	1.6	89

6

#	Article	IF	CITATIONS
91	Genetic blockade of adenosine A2A receptors induces cognitive impairments and anatomical changes related to psychotic symptoms in mice. European Neuropsychopharmacology, 2016, 26, 1227-1240.	0.3	26
92	Investigation of LRRC8-Mediated Volume-Regulated Anion Currents in Xenopus Oocytes. Biophysical Journal, 2016, 111, 1429-1443.	0.2	94
93	The Exonuclease Trex2 Shapes PsoriaticÂPhenotype. Journal of Investigative Dermatology, 2016, 136, 2345-2355.	0.3	15
94	Presynaptic P2X1-3 and α3-containing nicotinic receptors assemble into functionally interacting ion channels in the rat hippocampus. Neuropharmacology, 2016, 105, 241-257.	2.0	14
95	Fluorescent Ligands and TR-FRET to Study Receptor–Receptor Interactions in the Brain. Neuromethods, 2016, , 99-107.	0.2	0
96	Co-immunoprecipitation from Brain. Neuromethods, 2016, , 19-29.	0.2	6
97	In Situ Proximity Ligation Assay to Study and Understand the Distribution and Balance of GPCR Homo- and Heteroreceptor Complexes in the Brain. Neuromethods, 2016, , 109-124.	0.2	28
98	GPCR-Mediated MAPK/ERK Cascade Activation in Mouse Striatal Slices. Neuromethods, 2016, , 465-472.	0.2	0
99	Untangling dopamine-adenosine receptor assembly in experimental parkinsonism. DMM Disease Models and Mechanisms, 2015, 8, 57-63.	1.2	55
100	Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells. Journal of the American Chemical Society, 2015, 137, 15892-15898.	6.6	109
101	Visualizing G Proteinâ€Coupled Receptorâ€Receptor Interactions in Brain Using Proximity Ligation In Situ Assay. Current Protocols in Cell Biology, 2015, 67, 17.17.17.17.16.	2.3	25
102	Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands. Neuropharmacology, 2015, 98, 58-67.	2.0	20
103	Enhancement of the FGFR1 signaling in the FGFR1-5-HT1A heteroreceptor complex in midbrain raphe 5-HT neuron systems. Relevance for neuroplasticity and depression. Biochemical and Biophysical Research Communications, 2015, 463, 180-186.	1.0	33
104	Adenosine A1 receptor activation modulates N-methyl-d-aspartate (NMDA) preconditioning phenotype in the brain. Behavioural Brain Research, 2015, 282, 103-110.	1.2	13
105	The role of parkinson's diseaseâ€associated receptor <scp>GPR</scp> 37 in the hippocampus: functional interplay with the adenosinergic system. Journal of Neurochemistry, 2015, 134, 135-146.	2.1	48
106	Adenosine A2A receptor-mediated control of pilocarpine-induced tremulous jaw movements is Parkinson's disease-associated GPR37 receptor-dependent. Behavioural Brain Research, 2015, 288, 103-106.	1.2	15
107	Evidence for the existence of FGFR1–5-HT1A heteroreceptor complexes in the midbrain raphe 5-HT system. Biochemical and Biophysical Research Communications, 2015, 456, 489-493.	1.0	44
108	GPCR Oligomerization Analysis by Means of BRET and dFRAP. Methods in Molecular Biology, 2015, 1272, 133-141.	0.4	10

#	Article	IF	CITATIONS
109	Adenosine in the Neurobiology of Schizophrenia: Potential Adenosine Receptor-Based Pharmacotherapy. , 2015, , 375-388.		1
110	Predicting the Antinociceptive Efficacy of σ ₁ Receptor Ligands by a Novel Receptor Fluorescence Resonance Energy Transfer (FRET) Based Biosensor. Journal of Medicinal Chemistry, 2014, 57, 238-242.	2.9	20
111	Coassembly and Coupling of SK2 Channels and mGlu ₅ Receptors. Journal of Neuroscience, 2014, 34, 14793-14802.	1.7	20
112	Portraying G Protein-Coupled Receptors with Fluorescent Ligands. ACS Chemical Biology, 2014, 9, 1918-1928.	1.6	30
113	Dopamine <scp>D</scp> ₁ and corticotrophinâ€releasing hormone typeâ€2 <scp>α</scp> receptors assemble into functionally interacting complexes in living cells. British Journal of Pharmacology, 2014, 171, 5650-5664.	2.7	23
114	Uncovering Caffeine's Adenosine A _{2A} Receptor Inverse Agonism in Experimental Parkinsonism. ACS Chemical Biology, 2014, 9, 2496-2501.	1.6	37
115	Moonlighting Proteins and Protein–Protein Interactions as Neurotherapeutic Targets in the G Protein-Coupled Receptor Field. Neuropsychopharmacology, 2014, 39, 131-155.	2.8	101
116	Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand. Bioconjugate Chemistry, 2014, 25, 1847-1854.	1.8	44
117	Striatal adenosine A2A receptor expression is controlled by S-adenosyl-L-methionine-mediated methylation. Purinergic Signalling, 2014, 10, 523-528.	1.1	15
118	Cell Membrane Composition Affects GPCR Aggregation. Biophysical Journal, 2014, 106, 517a-518a.	0.2	0
119	Deciphering G Protein-Coupled Receptor Biology with Fluorescence-based Methods. Current Pharmaceutical Biotechnology, 2014, 15, 962-970.	0.9	1
120	Synthesis of the Adenosine A2A Receptor Fluorescent Agonist MRS5424. Bio-protocol, 2014, 4, .	0.2	0
121	Assembly of Gamma-Tubulin Ring Complexes. Progress in Molecular Biology and Translational Science, 2013, 117, 511-530.	0.9	11
122	Chemokine Oligomerization in Cell Signaling and Migration. Progress in Molecular Biology and Translational Science, 2013, 117, 531-578.	0.9	37
123	The Parkinson's diseaseâ€associated <scp>GPR</scp> 37 receptorâ€mediated cytotoxicity is controlled by its intracellular cysteineâ€rich domain. Journal of Neurochemistry, 2013, 125, 362-372.	2.1	28
124	Quaternary Structure Predictions and Structural Communication Features of GPCR Dimers. Progress in Molecular Biology and Translational Science, 2013, 117, 105-142.	0.9	14
125	Challenges in the Development of Heteromer-GPCR-Based Drugs. Progress in Molecular Biology and Translational Science, 2013, 117, 143-162.	0.9	10
126	G Protein–Coupled Receptor Heterodimerization in the Brain. Methods in Enzymology, 2013, 521, 281-294.	0.4	110

#	Article	IF	CITATIONS
127	Disease-Specific Heteromerization of G-Protein-Coupled Receptors That Target Drugs of Abuse. Progress in Molecular Biology and Translational Science, 2013, 117, 207-265.	0.9	28
128	Structural Aspects of Amyloid Formation. Progress in Molecular Biology and Translational Science, 2013, 117, 73-101.	0.9	5
129	Guanosine behind the scene. Journal of Neurochemistry, 2013, 126, 425-427.	2.1	16
130	Physicochemical Principles of Protein Aggregation. Progress in Molecular Biology and Translational Science, 2013, 117, 53-72.	0.9	16
131	The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1820-1831.	1.9	14
132	Di/Oligomerization of GPCRs—Mechanisms and Functional Significance. Progress in Molecular Biology and Translational Science, 2013, 117, 163-185.	0.9	34
133	The Structural Basis for the Allosteric Regulation of Ribonucleotide Reductase. Progress in Molecular Biology and Translational Science, 2013, 117, 389-410.	0.9	28
134	Consequences of Dimerization of the Voltage-Gated Proton Channel. Progress in Molecular Biology and Translational Science, 2013, 117, 335-360.	0.9	13
135	Structural, Evolutionary, and Assembly Principles of Protein Oligomerization. Progress in Molecular Biology and Translational Science, 2013, 117, 25-51.	0.9	107
136	Evolutionary, Physicochemical, and Functional Mechanisms of Protein Homooligomerization. Progress in Molecular Biology and Translational Science, 2013, 117, 3-24.	0.9	34
137	Multimerization of the Dnmt3a DNA Methyltransferase and Its Functional Implications. Progress in Molecular Biology and Translational Science, 2013, 117, 445-464.	0.9	16
138	G Protein-Coupled Receptor Heterocomplexes in Neuropsychiatric Disorders. Progress in Molecular Biology and Translational Science, 2013, 117, 187-205.	0.9	28
139	Oligomerization of Dynamin Superfamily Proteins in Health and Disease. Progress in Molecular Biology and Translational Science, 2013, 117, 411-443.	0.9	49
140	Oligomerization in Endoplasmic Reticulum Stress Signaling. Progress in Molecular Biology and Translational Science, 2013, 117, 465-484.	0.9	5
141	Oligomerization of the Mitochondrial Protein VDAC1. Progress in Molecular Biology and Translational Science, 2013, 117, 303-334.	0.9	56
142	Dopamine D2 receptor-mediated modulation of adenosine A2A receptor agonist binding within the A2AR/D2R oligomer framework. Neurochemistry International, 2013, 63, 42-46.	1.9	24
143	Receptor Heteromeric Assembly—How It Works and Why It Matters. Progress in Molecular Biology and Translational Science, 2013, 117, 361-386.	0.9	35
144	Social Networking Among Voltage-Activated Potassium Channels. Progress in Molecular Biology and Translational Science, 2013, 117, 269-302.	0.9	9

#	Article	IF	CITATIONS
145	β-Adrenergic Receptors Activate Exchange Protein Directly Activated by cAMP (Epac), Translocate Munc13-1, and Enhance the Rab3A-RIM1I± Interaction to Potentiate Glutamate Release at Cerebrocortical Nerve Terminals. Journal of Biological Chemistry, 2013, 288, 31370-31385.	1.6	42
146	Oligomerization of Rab/Effector Complexes in the Regulation of Vesicle Trafficking. Progress in Molecular Biology and Translational Science, 2013, 117, 579-614.	0.9	7
147	Ras-Association Domain of Sorting Nexin 27 Is Critical for Regulating Expression of GIRK Potassium Channels. PLoS ONE, 2013, 8, e59800.	1.1	21
148	A New Interpretative Paradigm for Conformational Protein Diseases. Current Protein and Peptide Science, 2013, 14, 141-160.	0.7	5
149	Targeting striatal metabotropic glutamate receptor type 5 in Parkinson's disease: bridging molecular studies and clinical trials. CNS and Neurological Disorders - Drug Targets, 2013, 12, 1128-42.	0.8	9
150	On the existence and function of galanin receptor heteromers in the central nervous system. Frontiers in Endocrinology, 2012, 3, 127.	1.5	57
151	Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks. Frontiers in Physiology, 2012, 3, 136.	1.3	67
152	GPCR Heteromers and their Allosteric Receptor-Receptor Interactions. Current Medicinal Chemistry, 2012, 19, 356-363.	1.2	83
153	GABAB Receptors-Associated Proteins: Potential Drug Targets in Neurological Disorders?. Current Drug Targets, 2012, 13, 129-144.	1.0	28
154	The Existence of FGFR1-5-HT1A Receptor Heterocomplexes in Midbrain 5-HT Neurons of the Rat: Relevance for Neuroplasticity. Journal of Neuroscience, 2012, 32, 6295-6303.	1.7	17
155	Muscarinic Acetylcholine Receptor-Interacting Proteins (mAChRIPs): Targeting the Receptorsome. Current Drug Targets, 2012, 13, 53-71.	1.0	19
156	Editorial [Hot Topic: G protein-Coupled Receptors Interacting Proteins: Towards the Druggable Interactome (Guest Editor: Francisco Ciruela)]. Current Drug Targets, 2012, 13, 1-2.	1.0	5
157	Synergistic Interaction Between Fentanyl and a Tramadol:Paracetamol Combination on the Inhibition of Nociception in Mice. Journal of Pharmacological Sciences, 2012, 118, 299-302.	1.1	7
158	Fluorescence resonance energy transfer-based technologies in the study of protein–protein interactions at the cell surface. Methods, 2012, 57, 467-472.	1.9	43
159	Ras-Associated (RA) Domain of Sorting Nexin 27 (SNX27) is Critical for Regulating GIRK Channels. Biophysical Journal, 2012, 102, 537a.	0.2	Ο
160	Dopamine D4 receptor, but not the ADHD-associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain. Molecular Psychiatry, 2012, 17, 650-662.	4.1	82
161	Molecular determinants of A _{2A} R–D ₂ R allosterism: role of the intracellular loop 3 of the D ₂ R. Journal of Neurochemistry, 2012, 123, 373-384.	2.1	53
162	Fibroblast Growth Factor Receptor 1– 5-Hydroxytryptamine 1A Heteroreceptor Complexes and Their Enhancement of Hippocampal Plasticity. Biological Psychiatry, 2012, 71, 84-91.	0.7	118

#	Article	IF	CITATIONS
163	On the role of volume transmission and receptor–receptor interactions in social behaviour: Focus on central catecholamine and oxytocin neurons. Brain Research, 2012, 1476, 119-131.	1.1	65
164	G protein-coupled receptor oligomerization and brain integration: Focus on adenosinergic transmission. Brain Research, 2012, 1476, 86-95.	1.1	30
165	Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A2A and metabotropic glutamate type 5 receptors: Focus on beta-synuclein expression. Gene, 2012, 508, 199-205.	1.0	5
166	A modification of the split-tobacco etch virus method for monitoring interactions between membrane proteins in mammalian cells. Analytical Biochemistry, 2012, 423, 109-118.	1.1	8
167	Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. Experimental Cell Research, 2012, 318, 603-613.	1.2	70
168	Bioinformatics and mathematical modelling in the study of receptor–receptor interactions and receptor oligomerization. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1267-1283.	1.4	17
169	Adenosine receptor containing oligomers: Their role in the control of dopamine and glutamate neurotransmission in the brain. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1245-1255.	1.4	67
170	Adenosine Receptors. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1231-1232.	1.4	5
171	Agonist-induced formation of FGFR1 homodimers and signaling differ among members of the FGF family. Biochemical and Biophysical Research Communications, 2011, 409, 764-768.	1.0	22
172	Caffeine improves attention deficit in neonatal 6-OHDA lesioned rats, an animal model of attention deficit hyperactivity disorder (ADHD). Neuroscience Letters, 2011, 494, 44-48.	1.0	28
173	On the Existence of a Possible A2A–D2–β-Arrestin2 Complex: A2A Agonist Modulation of D2 Agonist-Induced β-Arrestin2 Recruitment. Journal of Molecular Biology, 2011, 406, 687-699.	2.0	76
174	Agonist-specific voltage sensitivity at the dopamine D2S receptor – Molecular determinants and relevance to therapeutic ligands. Neuropharmacology, 2011, 61, 937-949.	2.0	31
175	Molecular mechanisms of MLC1 and GLIALCAM mutations in megalencephalic leukoencephalopathy with subcortical cysts. Human Molecular Genetics, 2011, 20, 3266-3277.	1.4	80
176	Epigenetic Modulation of Adenosine A2A Receptor: A Putative Therapeutical Tool for the Treatment of Parkinson's Disease. , 2011, , .		2
177	Dopamine D ₄ receptor oligomerization – contribution to receptor biogenesis. FEBS Journal, 2011, 278, 1333-1344.	2.2	30
178	Fentanyl–trazodone–paracetamol triple drug combination: Multimodal analgesia in a mouse model of visceral pain. Pharmacology Biochemistry and Behavior, 2011, 98, 331-336.	1.3	14
179	Chapter 5. Oligomerization of G Protein-coupled Receptors: Insights from Fluorescent and Luminescent-based Methods. RSC Drug Discovery Series, 2011, , 90-110.	0.2	0
180	Moonlighting characteristics of G protein oupled receptors: Focus on receptor heteromers and relevance for neurodegeneration. IUBMB Life, 2011, 63, 463-472.	1.5	55

#	Article	IF	CITATIONS
181	Muscarinic receptor family interacting proteins: Role in receptor function. Journal of Neuroscience Methods, 2011, 195, 161-169.	1.3	25
182	Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms. Journal of Receptor and Signal Transduction Research, 2011, 31, 315-331.	1.3	20
183	Dissecting the Conserved NPxxY Motif of the M ₃ Muscarinic Acetylcholine Receptor: Critical Role of Asp-7.49 for Receptor Signaling and Multiprotein Complex Formation. Cellular Physiology and Biochemistry, 2011, 28, 1009-1022.	1.1	15
184	Abnormal calcium handling in atrial fibrillation is linked to up-regulation of adenosine A2A receptors. European Heart Journal, 2011, 32, 721-729.	1.0	67
185	An Update on Adenosine A2A Receptors as Drug Target in Parkinson's Disease. CNS and Neurological Disorders - Drug Targets, 2011, 10, 659-669.	0.8	22
186	Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends in Biotechnology, 2010, 28, 407-415.	4.9	83
187	Histamine H3 receptor activation potentiates peripheral opioid-mediated antinociception: Substance P role in peripheral inflammation in mice. European Journal of Pharmacology, 2010, 638, 72-77.	1.7	8
188	The M5 muscarinic acetylcholine receptor third intracellular loop regulates receptor function and oligomerization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 813-825.	1.9	21
189	Evidence for oligomerization between GABA _B receptors and GIRK channels containing the GIRK1 and GIRK3 subunits. European Journal of Neuroscience, 2010, 32, 1265-1277.	1.2	52
190	Impaired M ₃ Muscarinic Acetylcholine Receptor Signal Transduction Through Blockade of Binding of Multiple Proteins to its Third Intracellular Loop. Cellular Physiology and Biochemistry, 2010, 25, 397-408.	1.1	20
191	G-protein-coupled receptor heteromer dynamics. Journal of Cell Science, 2010, 123, 4215-4220.	1.2	46
192	The Metabotropic Glutamate Receptor mGlu7 Activates Phospholipase C, Translocates Munc-13-1 Protein, and Potentiates Glutamate Release at Cerebrocortical Nerve Terminals. Journal of Biological Chemistry, 2010, 285, 17907-17917.	1.6	55
193	Adenosine receptors interacting proteins (ARIPs): Behind the biology of adenosine signaling. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 9-20.	1.4	61
194	A serine point mutation in the adenosine A2AR C-terminal tail reduces receptor heteromerization and allosteric modulation of the dopamine D2R. Biochemical and Biophysical Research Communications, 2010, 394, 222-227.	1.0	68
195	Dopamine D2 and 5-hydroxytryptamine 5-HT2A receptors assemble into functionally interacting heteromers. Biochemical and Biophysical Research Communications, 2010, 401, 605-610.	1.0	87
196	Characterization of the A2AR–D2R interface: Focus on the role of the C-terminal tail and the transmembrane helices. Biochemical and Biophysical Research Communications, 2010, 402, 801-807.	1.0	93
197	Adenosine–Dopamine Interactions in the Pathophysiology and Treatment of CNS Disorders. CNS Neuroscience and Therapeutics, 2010, 16, e18-42.	1.9	141
198	On the expanding terminology in the GPCR field: The meaning of receptor mosaics and receptor heteromers. Journal of Receptor and Signal Transduction Research, 2010, 30, 287-303.	1.3	30

#	Article	IF	CITATIONS
199	The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor–receptor interactions. Journal of Receptor and Signal Transduction Research, 2010, 30, 272-283.	1.3	74
200	G protein-coupled receptor oligomerization for what?. Journal of Receptor and Signal Transduction Research, 2010, 30, 322-330.	1.3	22
201	An integrated view on the role of receptor mosaics at perisynaptic level: focus on adenosine A _{2A} , dopamine D ₂ , cannabinoid CB ₁ , and metabotropic glutamate mGlu ₅ receptors. Journal of Receptor and Signal Transduction Research, 2010, 30, 355-369.	1.3	30
202	Regulation of a2-adrenoceptor gene expression by chronic lithium treatment in rat brain. Methods and Findings in Experimental and Clinical Pharmacology, 2010, 32, 721.	0.8	9
203	Metabotropic glutamate type 5, dopamine D ₂ and adenosine A _{2a} receptors form higherâ€order oligomers in living cells. Journal of Neurochemistry, 2009, 109, 1497-1507.	2.1	249
204	Subcellular compartmentâ€specific molecular diversity of pre―and postâ€synaptic GABA _B â€activated GIRK channels in Purkinje cells. Journal of Neurochemistry, 2009, 110, 1363-1376.	2.1	65
205	The association of metabotropic glutamate receptor type 5 with the neuronal Ca ²⁺ â€binding protein 2 modulates receptor function. Journal of Neurochemistry, 2009, 111, 555-567.	2.1	27
206	Metabotropic glutamate receptor type 11± and tubulin assemble into dynamic interacting complexes. Journal of Neurochemistry, 2008, 76, 750-757.	2.1	31
207	Light resonance energy transferâ€based methods in the study of G proteinâ€coupled receptor oligomerization. BioEssays, 2008, 30, 82-89.	1.2	37
208	Fluorescence-based methods in the study of protein–protein interactions in living cells. Current Opinion in Biotechnology, 2008, 19, 338-343.	3.3	149
209	Gâ€proteinâ€coupled receptor heteromers: function and ligand pharmacology. British Journal of Pharmacology, 2008, 153, S90-8.	2.7	60
210	Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nature Methods, 2008, 5, 727-733.	9.0	269
211	Cell type-specific subunit composition of G protein-gated potassium channels in the cerebellum. Journal of Neurochemistry, 2008, 105, 497-511.	2.1	67
212	Detection of higherâ€order G proteinâ€coupled receptor oligomers by a combined BRET–BiFC technique. FEBS Letters, 2008, 582, 2979-2984.	1.3	89
213	Plasma membrane diffusion of g protein-coupled receptor oligomers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 2262-2268.	1.9	41
214	An Update on Adenosine A2A-Dopamine D2 Receptor Interactions: Implications for the Function of G Protein-Coupled Receptors. Current Pharmaceutical Design, 2008, 14, 1468-1474.	0.9	229
215	Detection of Heteromers Formed by Cannabinoid CB ₁ , Dopamine D ₂ , and Adenosine A _{2A} G-Protein-Coupled Receptors by Combining Bimolecular Fluorescence Complementation and Bioluminescence Energy Transfer. Scientific World Journal, The, 2008, 8, 1088-1097.	0.8	105
216	Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain. Frontiers in Bioscience - Landmark, 2008, 13, 2391.	3.0	135

#	Article	IF	CITATIONS
217	Actin-binding Protein α-Actinin-1 Interacts with the Metabotropic Glutamate Receptor Type 5b and Modulates the Cell Surface Expression and Function of the Receptor. Journal of Biological Chemistry, 2007, 282, 12143-12153.	1.6	37
218	Heteromeric Nicotinic Acetylcholine–Dopamine Autoreceptor Complexes Modulate Striatal Dopamine Release. Neuropsychopharmacology, 2007, 32, 35-42.	2.8	63
219	Reply: Does the adenosine A2A receptor stimulate the ryanodine receptor?. Cardiovascular Research, 2007, 73, 249-250.	1.8	2
220	Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends in Neurosciences, 2007, 30, 440-446.	4.2	136
221	Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiology of Learning and Memory, 2007, 87, 42-56.	1.0	115
222	The neuronal Ca2+-binding protein 2 (NECAB2) interacts with the adenosine A2A receptor and modulates the cell surface expression and function of the receptor. Molecular and Cellular Neurosciences, 2007, 36, 1-12.	1.0	37
223	Striatal Adenosine A2A and Cannabinoid CB1 Receptors Form Functional Heteromeric Complexes that Mediate the Motor Effects of Cannabinoids. Neuropsychopharmacology, 2007, 32, 2249-2259.	2.8	229
224	Adenosine Receptor Heteromers and their Integrative Role in Striatal Function. Scientific World Journal, The, 2007, 7, 74-85.	0.8	89
225	The coexistence of multiple receptors in a single nerve terminal provides evidence for pre-synaptic integration. Journal of Neurochemistry, 2007, 103, 2314-2326.	2.1	12
226	Neurotransmitter receptor heteromers and their integrative role in †local modules': The striatal spine module. Brain Research Reviews, 2007, 55, 55-67.	9.1	112
227	Old and new ways to calculate the affinity of agonists and antagonists interacting with G-protein-coupled monomeric and dimeric receptors: The receptor–dimer cooperativity index. , 2007, 116, 343-354.		70
228	Receptor–receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. Journal of Neural Transmission, 2007, 114, 93-104.	1.4	69
229	Heterodimeric adenosine receptors: a device to regulate neurotransmitter release. Cellular and Molecular Life Sciences, 2006, 63, 2427-2431.	2.4	88
230	Adenosine A2A receptors are expressed in human atrial myocytes and modulate spontaneous sarcoplasmic reticulum calcium release. Cardiovascular Research, 2006, 72, 292-302.	1.8	62
231	The Two-State Dimer Receptor Model: A General Model for Receptor Dimers. Molecular Pharmacology, 2006, 69, 1905-1912.	1.0	76
232	Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1-A2A Receptor Heteromers. Journal of Neuroscience, 2006, 26, 2080-2087.	1.7	553
233	Glutamate Released by Dendritic Cells as a Novel Modulator of T Cell Activation. Journal of Immunology, 2006, 177, 6695-6704.	0.4	130
234	Role of Electrostatic Interaction in Receptor–Receptor Heteromerization. Journal of Molecular Neuroscience, 2005, 26, 125-132.	1.1	74

#	Article	IF	CITATIONS
235	Partners for Adenosine A ₁ Receptors. Journal of Molecular Neuroscience, 2005, 26, 221-232.	1.1	25
236	Heptaspanning Membrane Receptors and Cytoskeletal/Scaffolding Proteins: Focus on Adenosine, Dopamine, and Metabotropic Glutamate Receptor Function. Journal of Molecular Neuroscience, 2005, 26, 277-292.	1.1	25
237	Dimer-based model for heptaspanning membrane receptors. Trends in Biochemical Sciences, 2005, 30, 360-366.	3.7	60
238	ROLE OF ADENOSINE IN THE CONTROL OF HOMOSYNAPTIC PLASTICITY IN STRIATAL EXCITATORY SYNAPSES. Journal of Integrative Neuroscience, 2005, 04, 445-464.	0.8	45
239	Group I Metabotropic Glutamate Receptors Mediate a Dual Role of Glutamate in T Cell Activation. Journal of Biological Chemistry, 2004, 279, 33352-33358.	1.6	113
240	Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-d-aspartate receptor stimulation. Journal of Neurochemistry, 2004, 91, 873-880.	2.1	107
241	Combining Mass Spectrometry and Pull-Down Techniques for the Study of Receptor Heteromerization. Direct Epitopeâ^'Epitope Electrostatic Interactions between Adenosine A2Aand Dopamine D2Receptors. Analytical Chemistry, 2004, 76, 5354-5363.	3.2	195
242	Adenosine A2A-dopamine D2 receptor–receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism and Related Disorders, 2004, 10, 265-271.	1.1	132
243	Mutual regulation between metabotropic glutamate type 1αÂreceptor and caveolin proteins: from traffick to constitutive activity. Experimental Cell Research, 2004, 300, 23-34.	1.2	26
244	Regulation of heptaspanning-membrane-receptor function by dimerization and clustering. Trends in Biochemical Sciences, 2003, 28, 238-243.	3.7	74
245	Metabotropic glutamate type 1α receptor localizes in low-density caveolin-rich plasma membrane fractions. Journal of Neurochemistry, 2003, 86, 785-791.	2.1	31
246	Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. Journal of Neurochemistry, 2003, 88, 726-734.	2.1	139
247	Ligand-induced caveolae-mediated internalization of A1 adenosine receptors: morphological evidence of endosomal sorting and receptor recycling. Experimental Cell Research, 2003, 285, 72-90.	1.2	65
248	Adenosine A2A-Dopamine D2 Receptor-Receptor Heteromerization. Journal of Biological Chemistry, 2003, 278, 46741-46749.	1.6	401
249	The Adenosine A2A Receptor Interacts with the Actin-binding Protein α-Actinin. Journal of Biological Chemistry, 2003, 278, 37545-37552.	1.6	100
250	Glutamate mGlu5-Adenosine A2A-Dopamine D2 Receptor Interactions in the Striatum. Implications for Drug Therapy in Neuro-psychiatric Disorders and Drug Abuse. Current Medicinal Chemistry - Central Nervous System Agents, 2003, 3, 1-26.	0.6	18
251	Receptor heteromerization in adenosine A _{2A} receptor signaling. Neurology, 2003, 61, S19-23.	1.5	235
252	Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: Implications for striatal neuronal function. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11940-11945.	3.3	345

#	Article	IF	CITATIONS
253	Interactions among adenosine deaminase, adenosine A1 receptors and dopamine D1 receptors in stably cotransfected fibroblast cells and neurons. Neuroscience, 2002, 113, 709-719.	1.1	55
254	Homer proteins and InsP3 receptors co-localise in the longitudinal sarcoplasmic reticulum of skeletal muscle fibres. Cell Calcium, 2002, 32, 193-200.	1.1	52
255	Characterization of the Dimerization of Metabotropic Glutamate Receptors Using an N-Terminal Truncation of mGluR11±. Journal of Neurochemistry, 2002, 72, 2539-2547.	2.1	70
256	Molecular Determinants of Metabotropic Glutamate Receptor 1B Trafficking. Molecular and Cellular Neurosciences, 2001, 17, 577-588.	1.0	55
257	Adenosine A _{2B} Receptors Behave as an Alternative Anchoring Protein for Cell Surface Adenosine Deaminase in Lymphocytes and Cultured Cells. Molecular Pharmacology, 2001, 59, 127-134.	1.0	98
258	Immunocytochemical localization of metabotropic glutamate receptor type 11± and tubulin in rat brain. NeuroReport, 2001, 12, 1285-1291.	0.6	18
259	Adenosine/dopamine receptor-receptor interactions in the central nervous system. Drug Development Research, 2001, 52, 296-302.	1.4	11
260	Adenosine-glutamate receptor-receptor interactions in the central nervous system. Drug Development Research, 2001, 52, 316-322.	1.4	4
261	Metabotropic Glutamate 1α and Adenosine A1 Receptors Assemble into Functionally Interacting Complexes. Journal of Biological Chemistry, 2001, 276, 18345-18351.	1.6	170
262	Adenosine A2B receptors behave as an alternative anchoring protein for cell surface adenosine deaminase in lymphocytes and cultured cells. Molecular Pharmacology, 2001, 59, 127-34.	1.0	37
263	Involvement of caveolin in ligand-induced recruitment and internalization of A(1) adenosine receptor and adenosine deaminase in an epithelial cell line. Molecular Pharmacology, 2001, 59, 1314-23.	1.0	32
264	Mouse brain and muscle tissues constitutively express high levels of Homer proteins. FEBS Journal, 2000, 267, 634-639.	0.2	72
265	The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13967-13972.	3.3	166
266	The Heat Shock Cognate Protein hsc73 Assembles with A 1 Adenosine Receptors To Form Functional Modules in the Cell Membrane. Molecular and Cellular Biology, 2000, 20, 5164-5174.	1.1	62
267	Molecular characterisation of two structurally distinct groups of human homers, generated by extensive alternative splicing. Journal of Molecular Biology, 2000, 295, 1185-1200.	2.0	60
268	Homer-1c/Vesl-1L Modulates the Cell Surface Targeting of Metabotropic Glutamate Receptor Type 1α: Evidence for an Anchoring Function. Molecular and Cellular Neurosciences, 2000, 15, 36-50.	1.0	117
269	Interactions of the C Terminus of Metabotropic Glutamate Receptor Type 1α with Rat Brain Proteins. Journal of Neurochemistry, 1999, 72, 346-354.	2.1	55
270	Identification, cloning and analysis of expression of a new alternatively spliced form of the metabotropic glutamate receptor mGluR1 mRNA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1446, 161-166.	2.4	21

#	Article	IF	CITATIONS
271	Cell surface expression of the metabotropic glutamate receptor type 1α is regulated by the C-terminal tail. FEBS Letters, 1999, 448, 91-94.	1.3	22
272	Functional regulation of metabotropic glutamate receptor type 1c: a role for phosphorylation in the desensitization of the receptor. FEBS Letters, 1999, 462, 278-282.	1.3	20
273	Co-expression of metabotropic glutamate receptor type 1α with Homer-1a/Vesl-1S increases the cell surface expression of the receptor. Biochemical Journal, 1999, 341, 795-803.	1.7	95
274	Immunological identification of a new Homer related protein in rat brain an in HEK-293 cells. Biochemical Society Transactions, 1999, 27, A113-A113.	1.6	0
275	The molecular characterisation of a family of Homer proteins which are expressed constitutively in mammalian brain and mammalian cell lines. Biochemical Society Transactions, 1999, 27, A113-A113.	1.6	3
276	Co-expression of metabotropic glutamate receptor type 1α with Homer-1a/Vesl-1S increases the cell surface expression of the receptor. Biochemical Journal, 1999, 341, 795.	1.7	45
277	Co-expression of metabotropic glutamate receptor type 1alpha with homer-1a/Vesl-1S increases the cell surface expression of the receptor. Biochemical Journal, 1999, 341 (Pt 3), 795-803.	1.7	26
278	Interactions of the C terminus of metabotropic glutamate receptor type 1alpha with rat brain proteins: evidence for a direct interaction with tubulin. Journal of Neurochemistry, 1999, 72, 346-54.	2.1	19
279	Ecto-adenosine deaminase: An ecto-enzyme and a costimulatory protein acting on a variety of cell surface receptors. , 1998, 45, 261-268.		12
280	Ligand-Induced Phosphorylation, Clustering, and Desensitization of A ₁ Adenosine Receptors. Molecular Pharmacology, 1997, 52, 788-797.	1.0	80
281	Differential internalisation of mGluR1 splice variants in response to agonist and phorbol esters in permanently transfected BHK cells. FEBS Letters, 1997, 418, 83-86.	1.3	55
282	Cell surface adenosine deaminase: Much more than an ectoenzyme. Progress in Neurobiology, 1997, 52, 283-294.	2.8	224
283	On the role of the low-affinity neurotrophin receptor p75LNTR in nerve growth factor induction of differentiation and AP 1 binding activity in PC12 cells. Journal of Molecular Neuroscience, 1997, 8, 29-44.	1.1	9
284	The Cluster-Arranged Cooperative Model: A Model That Accounts for the Kinetics of Binding to A1Adenosine Receptorsâ€. Biochemistry, 1996, 35, 3007-3015.	1.2	38
285	Adenosine deaminase affects ligand-induced signalling by interacting with cell surface adenosine receptors. FEBS Letters, 1996, 380, 219-223.	1.3	150
286	Adenosine Deaminase Interacts with A ₁ Adenosine Receptors in Pig Brain Cortical Membranes. Journal of Neurochemistry, 1996, 66, 1675-1682.	2.1	58
287	Immunological identification of A1adenosine receptors in brain cortex. Journal of Neuroscience Research, 1995, 42, 818-828.	1.3	121
288	Solubilization and molecular characterization of the nitrobenzylthioinosine binding sites from pig kidney brush-border membranes. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1191, 94-102.	1.4	9