List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7579315/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Schiff bases in medicinal chemistry: a patent review (2010-2015). Expert Opinion on Therapeutic Patents, 2017, 27, 63-79.	5.0	208
2	Quinazoline and quinazolinone as important medicinal scaffolds: a comparative patent review (2011–2016). Expert Opinion on Therapeutic Patents, 2018, 28, 281-297.	5.0	165
3	Multicomponent reactions (MCR) in medicinal chemistry: a patent review (2010-2020). Expert Opinion on Therapeutic Patents, 2021, 31, 267-289.	5.0	115
4	Therapeutic Potentials of Ectoâ€Nucleoside Triphosphate Diphosphohydrolase, Ectoâ€Nucleotide Pyrophosphatase/Phosphodiesterase, Ectoâ€5′â€Nucleotidase, and Alkaline Phosphatase Inhibitors. Medicinal Research Reviews, 2014, 34, 703-743.	10.5	90
5	In search of new α -glucosidase inhibitors: Imidazolylpyrazole derivatives. Bioorganic Chemistry, 2017, 71, 102-109.	4.1	51
6	Synthesis of new indazole based dual inhibitors of α-glucosidase and α-amylase enzymes, their in vitro, in silico and kinetics studies. Bioorganic Chemistry, 2020, 94, 103195.	4.1	51
7	Chromone containing sulfonamides as potent carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2012, 27, 744-747.	5.2	42
8	Benzoxazinone-thiosemicarbazones as antidiabetic leads via aldose reductase inhibition: Synthesis, biological screening and molecular docking study. Bioorganic Chemistry, 2019, 87, 857-866.	4.1	40
9	Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: Structure activity relationship and molecular modelling studies. Bioorganic and Medicinal Chemistry, 2015, 23, 2435-2444.	3.0	39
10	Inhibition of Alkaline Phosphatase: An Emerging New Drug Target. Mini-Reviews in Medicinal Chemistry, 2015, 15, 41-51.	2.4	38
11	Probing 2-acetylbenzofuran hydrazones and their metal complexes as α-glucosidase inhibitors. Bioorganic Chemistry, 2020, 102, 104082.	4.1	37
12	Novel acridine-based thiosemicarbazones as †̃turn-on' chemosensors for selective recognition of fluoride anion: a spectroscopic and theoretical study. Royal Society Open Science, 2018, 5, 180646.	2.4	34
13	Hetarylcoumarins: Synthesis and biological evaluation as potent α -glucosidase inhibitors. Bioorganic Chemistry, 2017, 73, 1-9.	4.1	33
14	Identification of novel chromone based sulfonamides as highly potent and selective inhibitors of alkaline phosphatases. European Journal of Medicinal Chemistry, 2013, 66, 438-449.	5.5	32
15	A patent update on therapeutic applications of urease inhibitors (2012–2018). Expert Opinion on Therapeutic Patents, 2019, 29, 181-189.	5.0	30
16	Sulfonyl hydrazones derived from 3-formylchromone as non-selective inhibitors of MAO-A and MAO-B: Synthesis, molecular modelling and in-silico ADME evaluation. Bioorganic Chemistry, 2017, 75, 291-302.	4.1	26
17	Evaluation of α-glucosidase inhibiting potentials with docking calculations of synthesized arylidene-pyrazolones. Bioorganic Chemistry, 2018, 77, 507-514.	4.1	26
18	Imidazole-pyrazole hybrids: Synthesis, characterization and in-vitro bioevaluation against α-glucosidase enzyme with molecular docking studies. Bioorganic Chemistry, 2019, 82, 267-273.	4.1	26

#	Article	IF	CITATIONS
19	Discovery of new chromone containing sulfonamides as potent inhibitors of bovine cytosolic carbonic anhydrase. Bioorganic and Medicinal Chemistry, 2011, 19, 3367-3371.	3.0	25
20	Coumarin sulfonates: New alkaline phosphatase inhibitors; inÂvitro and in silico studies. European Journal of Medicinal Chemistry, 2017, 131, 29-47.	5.5	25
21	N-Alkylated 1,4-Diazabicyclo[2.2.2]octane–Polyethylene Glycol Melt as Deep Eutectic Solvent for the Synthesis of Fisher Indoles and 1 <i>H</i> -Tetrazoles. ACS Omega, 2017, 2, 2891-2900.	3.5	25
22	Semicarbazone derivatives as urease inhibitors: Synthesis, biological evaluation, molecular docking studies and in-silico ADME evaluation. Bioorganic Chemistry, 2018, 79, 19-26.	4.1	24
23	2-Alkoxy-3-(sulfonylarylaminomethylene)-chroman-4-ones as potent and selective inhibitors of ectonucleotidases. European Journal of Medicinal Chemistry, 2016, 115, 484-494.	5.5	23
24	Quinolinyl-Thienyl Chalcones as Monoamine Oxidase Inhibitors and their In Silico Modeling Studies. Medicinal Chemistry, 2015, 11, 580-589.	1.5	23
25	Carbonic anhydrase inhibition by 1-aroyl-3-(4-aminosulfonylphenyl)thioureas. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 901-905.	5.2	22
26	Development and In vitro Anticancer Evaluation of Selfâ€Assembled Supramolecular pH Responsive Hydrogels of Carboxymethyl Chitosan and Polyoxometalate. ChemistrySelect, 2018, 3, 1472-1479.	1.5	21
27	Acridinedione as selective flouride ion chemosensor: a detailed spectroscopic and quantum mechanical investigation. RSC Advances, 2018, 8, 1993-2003.	3.6	21
28	Exploring antidiabetic potential of adamantyl-thiosemicarbazones via aldose reductase (ALR2) inhibition. Bioorganic Chemistry, 2019, 92, 103244.	4.1	21
29	Receptorâ€Spacerâ€Fluorophore Based Coumarinâ€Thiosemicarbazones as Anion Chemosensors with "Turn on―Response: Spectroscopic and Computational (DFT) Studies. ChemistrySelect, 2018, 3, 7633-7642.	1.5	20
30	Identification of NSAIDs as lipoxygenase inhibitors through highly sensitive chemiluminescence method, expression analysis in mononuclear cells and computational studies. Bioorganic Chemistry, 2021, 110, 104818.	4.1	20
31	Monoamine Oxidase Inhibition and Molecular Modeling Studies of Piperidyl-thienyl and 2-Pyrazoline Derivatives of Chalcones. Medicinal Chemistry, 2015, 11, 497-505.	1.5	19
32	Green synthesis, inhibition studies of yeast α-glucosidase and molecular docking of pyrazolylpyridazine amines. Bioorganic Chemistry, 2017, 71, 170-180.	4.1	16
33	Ectonucleotidase inhibitors: a patent review (2011-2016). Expert Opinion on Therapeutic Patents, 2017, 27, 1291-1304.	5.0	16
34	Acridine-based (thio)semicarbazones and hydrazones: Synthesis, in vitro urease inhibition, molecular docking and in-silico ADME evaluation. Bioorganic Chemistry, 2019, 82, 6-16.	4.1	16
35	Probing phenylcarbamoylazinane-1,2,4-triazole amides derivatives as lipoxygenase inhibitors along with cytotoxic, ADME and molecular docking studies. Bioorganic Chemistry, 2021, 107, 104525.	4.1	16
36	Sulfa Drugs as Inhibitors of Carbonic Anhydrase: New Targets for the Old Drugs. BioMed Research International, 2014, 2014, 1-10.	1.9	15

#	Article	IF	CITATIONS
37	3-(5-(Benzylideneamino)thiazol-3-yl)-2H-chromen-2-ones: a new class of alkaline phosphatase and ecto-5′-nucleotidase inhibitors. RSC Advances, 2016, 6, 21026-21036.	3.6	15
38	Synthesis of imidazole-pyrazole conjugates bearing aryl spacer and exploring their enzyme inhibition potentials. Bioorganic Chemistry, 2021, 108, 104686.	4.1	15
39	Electronic structure and absorption spectra of 6-picoline Schiff base: A DFT and XRD based approach. Journal of Molecular Structure, 2013, 1050, 10-14.	3.6	14
40	One-pot synthesis of tetrazole-1,2,5,6-tetrahydronicotinonitriles and cholinesterase inhibition: Probing the plausible reaction mechanism via computational studies. Bioorganic Chemistry, 2016, 65, 38-47.	4.1	14
41	N,N-Dimethylpyridin-4-amine (DMAP) based ionic liquids: evaluation of physical properties via molecular dynamics simulations and application as a catalyst for Fisher indole and 1H-tetrazole synthesis. RSC Advances, 2017, 7, 34197-34207.	3.6	14
42	4-Oxycoumarinyl linked acetohydrazide Schiff bases as potent urease inhibitors. Bioorganic Chemistry, 2020, 105, 104365.	4.1	14
43	Synthesis of benzimidazole based hydrazones as nonâ€sugar based αâ€glucosidase inhibitors: Structure activity relation and molecular docking. Drug Development Research, 2021, 82, 1033-1043.	2.9	14
44	Detailed investigation of anticancer activity of sulfamoyl benz(sulfon)amides and 1H–pyrazol–4–yl benzamides: An experimental and computational study. European Journal of Pharmacology, 2018, 832, 11-24.	3.5	13
45	Sulfonylhydrazones: Design, synthesis and investigation of ectonucleotidase (ALP & e5′NT) inhibition activities. Bioorganic Chemistry, 2020, 100, 103827.	4.1	13
46	New synthetic 1,2,4-triazole derivatives: Cholinesterase inhibition and molecular docking studies. Results in Chemistry, 2020, 2, 100041.	2.0	13
47	In search of a docking protocol to distinguish between DNA intercalators and groove binders: genetic algorithm vs. shape-complementarity based docking methods. RSC Advances, 2015, 5, 72394-72404.	3.6	12
48	Novel quinoxaline based chemosensors with selective dual mode of action: nucleophilic addition and host–guest type complex formation. RSC Advances, 2016, 6, 64009-64018.	3.6	12
49	Facile dimethyl amino group triggered cyclic sulfonamides synthesis and evaluation as alkaline phosphatase inhibitors. Bioorganic Chemistry, 2017, 71, 10-18.	4.1	12
50	Biological Evaluation of Azomethine-dihydroquinazolinone Conjugates as Cancer and Cholinesterase Inhibitors. Medicinal Chemistry, 2016, 12, 74-82.	1.5	11
51	Probing ferrocene-based thiosemicarbazones and their transition metal complexes as cholinesterase inhibitors. Inorganica Chimica Acta, 2020, 508, 119658.	2.4	11
52	Synthesis, characterization and biological evaluation of N-(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazol-4-yl)benzamides. RSC Advances, 2015, 5, 86428-86439.	3.6	10
53	Morpholinium and Piperidinium Based Deep Eutectic Solvents for Synthesis of Pyrazoleâ€5â€Carbonitriles, Indoles and Tetrazoles: Bulk Properties <i>via</i> Molecular Dynamics Simulations. ChemistrySelect, 2018, 3, 12907-12917.	1.5	10
54	Evaluation of sulfonate and sulfamate derivatives possessing benzofuran or benzothiophene nucleus as inhibitors of nucleotide pyrophosphatases/phosphodiesterases and anticancer agents. Bioorganic Chemistry, 2020, 104, 104305.	4.1	9

#	Article	IF	CITATIONS
55	Cholinesterase Inhibition Activity and Molecular Docking Study of Eugenol Derivatives. Sains Malaysiana, 2021, 50, 1037-1045.	0.5	8
56	Deep eutectic solvent mediated synthesis of 3,4-dihydropyrimidin-2(1H)-ones and evaluation of biological activities targeting neurodegenerative disorders. Bioorganic Chemistry, 2022, 118, 105457.	4.1	8
57	Solvent-free 1H-tetrazole, 1,2,5,6-tetrahydronicotinonitrile and pyrazole synthesis using quinoline based ionic fluoride salts (QuFs): thermal and theoretical studies. RSC Advances, 2015, 5, 95061-95072.	3.6	7
58	Identification of Imidazolylpyrazole Ligands as Potent Urease Inhibitors: Synthesis, Antiurease Activity and In Silico Docking Studies. ChemistrySelect, 2020, 5, 11817-11821.	1.5	7
59	Functionalized Oxoindolin Hydrazine Carbothioamide Derivatives as Highly Potent Inhibitors of Nucleoside Triphosphate Diphosphohydrolases. Frontiers in Pharmacology, 2020, 11, 585876.	3.5	7
60	Ionic liquid–based colloidal nanoparticles: applications in organic synthesis. , 2020, , 279-299.		7
61	Exploring synthetic and therapeutic prospects of new thiazoline derivatives as aldose reductase (ALR2) inhibitors. RSC Advances, 2021, 11, 17259-17282.	3.6	7
62	<p>Effect of 4-Fluoro-N-(4-Sulfamoylbenzyl) Benzene Sulfonamide on Acquisition and Expression of Nicotine-Induced Behavioral Sensitization and Striatal Adenosine Levels</p> . Drug Design, Development and Therapy, 2020, Volume 14, 3777-3786.	4.3	6
63	Effect of 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide on cognitive deficits and hippocampal plasticity during nicotine withdrawal in rats. Biomedicine and Pharmacotherapy, 2020, 131, 110783.	5.6	6
64	Synthesis, In-vitro evaluation and molecular docking studies of oxoindolin phenylhydrazine carboxamides as potent and selective inhibitors of ectonucleoside triphosphate diphosphohydrolase (NTPDase). Bioorganic Chemistry, 2021, 112, 104957.	4.1	6
65	<p>Analgesic and Antiallodynic Effects of 4-Fluoro-N-(4-Sulfamoylbenzyl) Benzene Sulfonamide in a Murine Model of Pain</p> . Drug Design, Development and Therapy, 2020, Volume 14, 4511-4518.	4.3	5
66	Recent Developments of Carbonic Anhydrase Inhibitors as Potential Drugs. BioMed Research International, 2015, 2015, 1-2.	1.9	4
67	Small molecules as activators in medicinal chemistry (2000–2016). Expert Opinion on Therapeutic Patents, 2017, 27, 1089-1110.	5.0	4
68	Evaluation of Ethylated Phenylcarbamoylazinaneâ€1,2,4â€Triazole Amides Derivatives as 15â€Lipoxygenase Inhibitors Together with Cytotoxic, ADME and Molecular Modeling Studies. ChemistrySelect, 2020, 5, 14210-14216.	1.5	4
69	A Novel Sulfonamide, 4-FS, Reduces Ethanol Drinking and Physical Withdrawal Associated With Ethanol Dependence. International Journal of Molecular Sciences, 2020, 21, 4411.	4.1	4
70	Recent Advances Towards Drug Design Targeting the Protease of 2019 Novel Coronavirus (2019-nCoV). Current Medicinal Chemistry, 2021, 28, 4484-4498.	2.4	4
71	In-Silico Analysis of Chromone Containing Sulfonamide Derivatives as Human Carbonic Anhydrase Inhibitors. Medicinal Chemistry, 2013, 9, 608-616.	1.5	4
72	Piperidiniumâ€Based Deep Eutectic Solvents: Efficient and Sustainable Ecoâ€Friendly Medium for Oneâ€Pot <i>N</i> â€Heterocycles Synthesis. ChemistrySelect, 2020, 5, 12697-12703.	1.5	3

#	Article	IF	CITATIONS
73	Synthesis, Carbonic Anhydrase II/IX/XII Inhibition, DFT, and Molecular Docking Studies of Hydrazide-Sulfonamide Hybrids of 4-Methylsalicyl- and Acyl-Substituted Hydrazide. BioMed Research International, 2022, 2022, 1-16.	1.9	3
74	Cholinesterase Inhibitory Activities of N-Phenylthiazol-2-Amine Derivatives and their Molecular Docking Studies. Medicinal Chemistry, 2015, 11, 489-496.	1.5	2
75	Utilization of transition metal fluoride-based solid support catalysts for the synthesis of sulfonamides: carbonic anhydrase inhibitory activity and in silico study. RSC Advances, 2022, 12, 3165-3179.	3.6	2
76	Nucleotide pyrophosphatase/phosphodiesterases (NPPs) including NPP1 and NPP2/ ATX as important drug targets: A patent review (2015-2020). Expert Opinion on Therapeutic Patents, 2022, 32, 743-751.	5.0	2
77	Probing new DABCO-F based ionic liquids as catalyst in organic synthesis. Journal of Molecular Structure, 2022, 1268, 133638.	3.6	2
78	3-(6-Fluoro-4-oxo-4H-chromen-3-yl)-3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dione. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2707-o2707.	0.2	1
79	Facile Synthesis and Electrochemical Evaluation of Coumarinâ€Tagged Pyridine and Thiophene Derivatives. ChemistrySelect, 2016, 1, 1596-1601.	1.5	1
80	A novel method for the synthesis of 1,2,4-triazole-derived heterocyclic compounds: enzyme inhibition and molecular docking studies. Journal of the Iranian Chemical Society, 2020, 17, 1183-1200.	2.2	1
81	Amathaspiramides A–F. , 2021, , 11-18.		1
82	Natural products with α-tertiary amine. , 2021, , 1-3.		1
83	Coumarinyl Aryl/Alkyl Sulfonates with Dual Potential: Alkaline Phosphatase and ROS Inhibitory Activities: In-Silico Molecular Modeling and ADME Evaluation. Letters in Drug Design and Discovery, 2019, 16, 256-272.	0.7	1
84	3-(6-Bromo-4-oxo-4H-chromen-3-yl)-3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dione. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3081-o3082.	0.2	0
85	(1S,3R)-1-Aminocyclopentane-1,3-diarboxylic acid (ACPD). , 2021, , 199-201.		0
86	Synthetic approach to the TAN1251 alkaloids. , 2021, , 187-198.		0
87	(â^°)-FR901483 and TAN1251 (A-D) 2021 167-185		0