J Ching Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7579233/publications.pdf

Version: 2024-02-01

516215 580395 31 632 16 25 citations h-index g-index papers 31 31 31 623 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Ligand-Induced Conformational and Structural Dynamics Changes inEscherichia coliCyclic AMP Receptor Proteinâ€. Biochemistry, 2002, 41, 6660-6667.	1.2	59
2	A Linear Correlation between the Energetics of Allosteric Communication and Protein Flexibility in theEscherichia coliCyclic AMP Receptor Protein Revealed by Mutation-Induced Changes in Compressibility and Amide Hydrogenâ^'Deuterium Exchangeâ€. Biochemistry, 2004, 43, 3844-3852.	1.2	54
3	Communications between the High-Affinity Cyclic Nucleotide Binding Sites inE. coliCyclic AMP Receptor Protein: Effect of Single Site Mutationsâ€. Biochemistry, 2002, 41, 11857-11867.	1.2	52
4	Mode of Selectivity in Cyclic AMP Receptor Protein-Dependent Promoters inEscherichia coliâ€. Biochemistry, 1996, 35, 1162-1172.	1.2	47
5	Solution Structure and Structural Dynamics of Envelope Protein Domain III of Mosquito- and Tick-Borne Flavivirusesâ€. Biochemistry, 2004, 43, 9168-9176.	1.2	38
6	Allostery in Rabbit Pyruvate Kinase:  Development of A Strategy To Elucidate the Mechanism. Biochemistry, 1998, 37, 15266-15276.	1.2	29
7	Structure and Dynamics of the Modular Halves ofEscherichia coliCyclic AMP Receptor Proteinâ€. Biochemistry, 2002, 41, 14771-14778.	1.2	28
8	Ability of E. coli Cyclic AMP Receptor Protein To Differentiate Cyclic Nucelotides:  Effects of Single Site Mutations. Biochemistry, 2002, 41, 2946-2955.	1.2	27
9	Role of Residue 138 in the Interdomain Hinge Region in Transmitting Allosteric Signals for DNA Binding inEscherichia colicAMP Receptor Proteinâ€. Biochemistry, 2004, 43, 4662-4669.	1.2	26
10	Interplay between Site-Specific Mutations and Cyclic Nucleotides in Modulating DNA Recognition byEscherichia coliCyclic AMP Receptor Proteinâ€,‡. Biochemistry, 2004, 43, 8901-8910.	1.2	26
11	Biopharmaceutical formulation. Current Opinion in Biotechnology, 2000, 11, 81-84.	3.3	22
12	Effects of metabolites on the structural dynamics of rabbit muscle pyruvate kinase. Biophysical Chemistry, 2003, 103, 1-11.	1.5	21
13	HIV Rev self-assembly is linked to a molten-globule to compact structural transition. Biophysical Chemistry, 2004, 108, 101-119.	1.5	20
14	A domain in human EXOG converts apoptotic endonuclease to DNA-repair exonuclease. Nature Communications, 2017, 8, 14959.	5.8	19
15	Linkage of Multiequilibria in DNA Recognition by the D53HEscherichia colicAMP Receptor Proteinâ€. Biochemistry, 2002, 41, 14935-14943.	1.2	18
16	The Negative Dominant Effects of T340M Mutation on Mammalian Pyruvate Kinase. Journal of Biological Chemistry, 1998, 273, 14772-14779.	1.6	17
17	Interactive and Dominant Effects of Residues 128 and 141 on Cyclic Nucleotide and DNA Bindings in Escherichia coli cAMP Receptor Protein. Journal of Biological Chemistry, 1998, 273, 705-712.	1.6	17
18	Escherichia colicAMP Receptor Proteinâ^'DNA Complexes. 1. Energetic Contributions of Half-Sites and Flanking Sequences in DNA Recognitionâ€. Biochemistry, 1998, 37, 5194-5200.	1.2	15

#	Article	IF	Citations
19	Long Range Communication in the Envelope Protein Domain III and Its Effect on the Resistance of West Nile Virus to Antibody-mediated Neutralization. Journal of Biological Chemistry, 2008, 283, 613-622.	1.6	15
20	Modulation of allostery of pyruvate kinase by shifting of an ensemble of microstates. Acta Biochimica Et Biophysica Sinica, 2008, 40, 663-669.	0.9	14
21	Interfacial Communications in Recombinant Rabbit Kidney Pyruvate Kinaseâ€,‡. Biochemistry, 1998, 37, 2949-2960.	1.2	13
22	The N-terminal Capping Propensities of the D-helix Modulate the Allosteric Activation of the Escherichia coli cAMP Receptor Protein. Journal of Biological Chemistry, 2012, 287, 39402-39411.	1.6	13
23	Thermodynamic Mechanism for the Evasion of Antibody Neutralization in Flaviviruses. Journal of the American Chemical Society, 2014, 136, 10315-10324.	6.6	9
24	Modulation of allosteric behavior through adjustment of the differential stability of the two interacting domains in E. coli cAMP receptor protein. Biophysical Chemistry, 2011, 159, 210-216.	1.5	7
25	A Host–Guest Relationship in Bone Morphogenetic Protein Receptor-II Defines Specificity in Ligand–Receptor Recognition. Biochemistry, 2012, 51, 6968-6980.	1.2	7
26	Structural and Functional Energetic Linkages in Allosteric Regulation of Muscle Pyruvate Kinase. Methods in Enzymology, 2011, 488, 185-217.	0.4	6
27	Differential modulation of energy landscapes of cyclic AMP receptor protein (CRP) as a regulatory mechanism for class II CRP-dependent promoters. Journal of Biological Chemistry, 2019, 294, 15544-15556.	1.6	6
28	Long-Range Communication Network in the Type 1B Bone Morphogenetic Protein Receptor. Biochemistry, 2015, 54, 7079-7088.	1.2	3
29	Signal Transmission in <i>Escherichia coli</i> Cyclic AMP Receptor Protein for Survival in Extreme Acidic Conditions. Biochemistry, 2021, 60, 2987-3006.	1.2	2
30	Structural Energy Landscapes and Plasticity of the Microstates of Apo <i>Escherichia coli</i> cAMP Receptor Protein. Biochemistry, 2020, 59, 460-470.	1.2	1
31	A tribute to Dr. Serge N. Timasheff, our mentor. Biophysical Reviews, 2021, 13, 459-484.	1.5	1