Arjan J H Frijns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7579047/publications.pdf

Version: 2024-02-01

567281 434195 1,024 43 15 31 citations h-index g-index papers 45 45 45 1210 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink. Applied Thermal Engineering, 2012, 36, 260-268.	6.0	227
2	Beyond the classic thermoneutral zone. Temperature, 2014, 1, 142-149.	3.0	151
3	Physiological modeling for technical clinical and research applications. Frontiers in Bioscience - Scholar, 2010, S2, 939-968.	2.1	77
4	Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe?. Energy and Buildings, 2020, 211, 109761.	6.7	68
5	Validation of an individualised model of human thermoregulation for predicting responses to cold air. International Journal of Biometeorology, 2007, 51, 169-179.	3.0	50
6	The impact of morning light intensity and environmental temperature on body temperatures and alertness. Physiology and Behavior, 2017, 175, 72-81.	2.1	39
7	Effect of individual characteristics on a mathematical model of human thermoregulation. Journal of Thermal Biology, 2004, 29, 577-581.	2.5	38
8	On-line monitoring of electrolytes in hemodialysis: on the road towards individualizing treatment. Expert Review of Medical Devices, 2016, 13, 933-943.	2.8	35
9	An integrated flex-microfluidic-Si chip device towards sweat sensing applications. Sensors and Actuators B: Chemical, 2016, 227, 427-437.	7.8	35
10	A microfluidic device based on an evaporation-driven micropump. Biomedical Microdevices, 2015, 17, 47.	2.8	32
11	Mixed finite element modelling of cartilaginous tissues. Mathematics and Computers in Simulation, 2003, 61, 549-560.	4.4	25
12	Local wettability tuning with laser ablation redeposits on PDMS. Applied Surface Science, 2014, 303, 456-464.	6.1	21
13	Local thermal sensation modeling-a review on the necessity and availability of local clothing properties and local metabolic heat production. Indoor Air, 2017, 27, 261-272.	4.3	21
14	Local clothing thermal properties of typical office ensembles under realistic static and dynamic conditions. International Journal of Biometeorology, 2018, 62, 2215-2229.	3.0	20
15	The Scales Project, a cross-national dataset on the interpretation of thermal perception scales. Scientific Data, 2019, 6, 289.	5.3	19
16	Squeezing a Sponge: A Three-Dimensional Solution in Poroelasticity. Computational Geosciences, 2003, 7, 49-59.	2.4	16
17	Effect of forced-air heaters on perfusion and temperature distribution during and after open-heart surgery. European Journal of Cardio-thoracic Surgery, 2007, 32, 888-895.	1.4	14
18	The Influence of Gas–Wall and Gas–Gas Interactions on the Accommodation Coefficients for Rarefied Gases: A Molecular Dynamics Study. Micromachines, 2020, 11, 319.	2.9	13

#	Article	IF	CITATIONS
19	Particle focusing by AC electroosmosis with additional axial flow. Microfluidics and Nanofluidics, 2015, 18, 1115-1129.	2.2	12
20	Density distribution for a dense hard-sphere gas in micro/nano-channels: Analytical and simulation results. Journal of Computational Physics, 2006, 219, 532-552.	3.8	11
21	Modeling rarefied gas-solid surface interactions for Couette flow with different wall temperatures using an unsupervised machine learning technique. Physical Review E, 2021, 104, 015309.	2.1	11
22	Application of astigmatism \hat{A}^{1} /4-PTV to analyze the vortex structure of AC electroosmotic flows. Microfluidics and Nanofluidics, 2014, 16, 553-569.	2.2	10
23	Measurement of model coefficients of skin sympathetic vasoconstriction. Physiological Measurement, 2010, 31, 77-93.	2.1	9
24	Self-organized twinning of actuated particles for microfluidic pumping. Applied Physics Letters, 2008, 92, 024104.	3.3	8
25	Mathematical Modeling of Thermal and Circulatory Effects During Hemodialysis. Artificial Organs, 2012, 36, 797-811.	1.9	8
26	Geometry effects on rarefied nanochannel flows. Microfluidics and Nanofluidics, 2013, 15, 661-673.	2.2	8
27	Effect of local skin blood flow during light and medium activities on local skin temperature predictions. Journal of Thermal Biology, 2019, 84, 439-450.	2.5	8
28	Molecular simulation of water vapor outgassing from silica nanopores. Microfluidics and Nanofluidics, 2015, 19, 565-576.	2.2	6
29	Temperature and surgical wound heat loss during orthopedic surgery: computer simulations and measurements. Canadian Journal of Anaesthesia, 2010, 57, 381-382.	1.6	5
30	Experimental and Numerical Validation of the One-Process Modeling Approach for the Hydration of K2CO3 Particles. Processes, 2022, 10, 547.	2.8	5
31	Validated numerical analysis of vortical structures in 3D AC electro-osmotic flows. Microfluidics and Nanofluidics, 2014, 16, 1019.	2.2	4
32	A Spectroscopic Technique for Local Temperature Measurement in a Micro-Optofluidic System. IEEE Sensors Journal, 2016, 16, 5232-5235.	4.7	4
33	A Fluorescent Micro-Optofluidic Sensor for In-Line Ion Selective Electrolyte Monitoring. IEEE Sensors Journal, 2018, 18, 3946-3951.	4.7	4
34	Development of EEM based silicon–water and silica–water wall potentials for non-reactive molecular dynamics simulations. Journal of Computational Physics, 2014, 268, 51-62.	3.8	3
35	Reversionary rotation of actuated particles for microfluidic near-surface mixing. Applied Physics Letters, 2011, 99, 024103.	3.3	1
36	Measurements of Deformations and Electrical Potentials in a Charged Porous Medium., 2005, , 133-139.		1

#	Article	IF	CITATIONS
37	Continuous Particle Separation With AC Electro-Osmosis and Dielectrophoresis in a Microchannel. , $2011,,$		O
38	1st European Conference on Gas Micro Flows (GasMems 2012). Journal of Physics: Conference Series, 2012, 362, 011001.	0.4	0
39	Integrated Microfluidic Pumping for Cooling Applications. , 2013, , .		O
40	Effects of sweating on distal skin temperature prediction during walking. Extreme Physiology and Medicine, $2015, 4, .$	2.5	0
41	Ion-selective optical sensor for continuous on-line monitoring of dialysate sodium during dialysis. Proceedings of SPIE, 2017, , .	0.8	0
42	Editorial for the special issue on non-equilibrium gas flows. European Journal of Mechanics, B/Fluids, 2017, 64, 1.	2.5	0
43	Bio-Inspired Microfluidics for Wearable Sensors. Proceedings (mdpi), 2017, 1, 824.	0.2	0