
Dominik Kopeć

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7578935/publications.pdf Version: 2024-02-01

DOMINIK KODEÄT

#	Article	IF	CITATIONS
1	The negative impact of intentionally introduced Quercus rubra L. on a forest community. Acta Societatis Botanicorum Poloniae, 2014, 83, 39-49.	0.8	68
2	Afforestation or natural succession? Looking for the best way to manage abandoned cut-over peatlands for biodiversity conservation. Ecological Engineering, 2014, 63, 143-152.	3.6	63
3	The relationship between vegetation and groundwater levels as an indicator of spontaneous wetland restoration. Ecological Engineering, 2013, 57, 242-251.	3.6	40
4	Multitemporal Hyperspectral Data Fusion with Topographic Indices—Improving Classification of Natura 2000 Grassland Habitats. Remote Sensing, 2019, 11, 2264.	4.0	28
5	Floodplain forest vegetation response to hydroengineering and climatic pressure – A five decade comparative analysis in the Bzura River valley (Central Poland). Forest Ecology and Management, 2014, 314, 120-130.	3.2	26
6	Application of multisensoral remote sensing data in the mapping of alkaline fens Natura 2000 habitat. Ecological Indicators, 2016, 70, 196-208.	6.3	24
7	Multiple Flights or Single Flight Instrument Fusion of Hyperspectral and ALS Data? A Comparison of their Performance for Vegetation Mapping. Remote Sensing, 2019, 11, 970.	4.0	22
8	The t-SNE Algorithm as a Tool to Improve the Quality of Reference Data Used in Accurate Mapping of Heterogeneous Non-Forest Vegetation. Remote Sensing, 2020, 12, 39.	4.0	17
9	Species diversity, biomass accumulation and carbon sequestration in the understorey of post-agricultural Scots pine forests. Silva Fennica, 2014, 48, .	1.3	17
10	Using Airborne Hyperspectral Imaging Spectroscopy to Accurately Monitor Invasive and Expansive Herb Plants: Limitations and Requirements of the Method. Sensors, 2019, 19, 2871.	3.8	16
11	Application of airborne hyperspectral data for mapping of invasive alien Spiraea tomentosa L.: a serious threat to peat bog plant communities. Wetlands Ecology and Management, 2020, 28, 357-373.	1.5	14
12	How threatened is the Polish wetland flora?. Oceanological and Hydrobiological Studies, 2012, 41, 79-89.	0.7	13
13	Analysis of Using Dense Image Matching Techniques to Study the Process of Secondary Succession in Non-Forest Natura 2000 Habitats. Remote Sensing, 2019, 11, 893.	4.0	13
14	Mapping Succession in Non-Forest Habitats by Means of Remote Sensing: Is the Data Acquisition Time Critical for Species Discrimination?. Remote Sensing, 2019, 11, 2629.	4.0	11
15	Hyperspectral vs. Multispectral data: Comparison of the spectral differentiation capabilities of Natura 2000 non-forest habitats. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184, 148-164.	11.1	9
16	Mapping Alkaline Fens, Transition Mires and Quaking Bogs Using Airborne Hyperspectral and Laser Scanning Data. Remote Sensing, 2021, 13, 1504.	4.0	8
17	Influence of Habitat Structure and Conditions in Floodplain Forests on Mollusc Assemblages. Polish Journal of Ecology, 2014, 62, 739-750.	0.2	7
18	How to effectively use long-term remotely sensed data to analyze the process of tree and shrub encroachment into open protected wetlands Applied Geography, 2020, 125, 102345.	3.7	7

DOMINIK KOPEÄ‡

#	Article	IF	CITATIONS
19	Canopy temperatures of selected tree species growing in the forest and outside the forest using aerial thermal infrared (3.6–4.9 µm) data. European Journal of Remote Sensing, 2022, 55, 313-325.	3.5	7
20	Changes in the silver fir forest vegetation 50 years after cessation of active management. Acta Societatis Botanicorum Poloniae, 2015, 84, 177-187.	0.8	6
21	Intra-Annual Variabilities of Rubus caesius L. Discrimination on Hyperspectral and LiDAR Data. Remote Sensing, 2021, 13, 107.	4.0	4
22	Comparison of physical and chemical properties of water and floristic diversity of oxbow lakes under different levels of human pressure: A case study of the lower San River (Poland). Ecohydrology and Hydrobiology, 2009, 9, 183-191.	2.3	3
23	Ecological and sociological spectrum of Ostericum palustre at new localities in central Poland. Biodiversity Research and Conservation, 2010, 17, 63-71.	0.3	3
24	The use of ALS, botanical, and soil data to monitor the environmental hazards and regeneration capacity of areas devastated by highway construction. Environmental Science and Pollution Research, 2016, 23, 13718-13731.	5.3	3
25	Using macrophytes as trophic state indicators in upland river waters: a case study of the Czarna Maleniecka River. Oceanological and Hydrobiological Studies, 2010, 39, 119-126.	0.7	2
26	The impact of land use and water quality on the flora of ecotones along a small lowland river (Central Poland). Oceanological and Hydrobiological Studies, 2014, 43, .	0.7	1