
## Valerii V Vashchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7578886/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF       | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 1  | Unidirectionally aligned bright quantum rods films, using T-shape ligands, for LCD application. Nano<br>Research, 2022, 15, 5392-5401.                                                                | 10.4     | 8         |
| 2  | Inkjetâ€Printed, Flexible Fullâ€Color Photoluminescenceâ€Type Color Filters for Displays. Advanced<br>Engineering Materials, 2022, 24, .                                                              | 3.5      | 10        |
| 3  | p-Terphenyl-containing symmetric tetraesters for nano-scale pitch ferroelectric liquid crystal<br>materials. Journal of Molecular Liquids, 2022, 356, 119051.                                         | 4.9      | 6         |
| 4  | Pâ€86: Inkâ€Jet Printed Stable Fullâ€Color Perovskite and Quantum Rod Color Filter. Digest of Technical<br>Papers SID International Symposium, 2022, 53, 1347-1350.                                   | 0.3      | 1         |
| 5  | Thermally Stable Quantum Rods, Covering Full Visible Range for Display and Lighting Application.<br>Small, 2021, 17, e2004487.                                                                        | 10.0     | 20        |
| 6  | Quantum Rods: Thermally Stable Quantum Rods, Covering Full Visible Range for Display and Lighting Application (Small 3/2021). Small, 2021, 17, 2170011.                                               | 10.0     | 2         |
| 7  | 26.2: <i>Invited Paper:</i> Photoâ€eligned Red, Green and Blue QRs for the LCD Brightness Enhancement.<br>Digest of Technical Papers SID International Symposium, 2021, 52, 168-168.                  | 0.3      | 0         |
| 8  | 51.2: Photoalignment and Photopatterning of Highly Concentrated Quantum Rods Embedded in Liquid<br>Crystal Polymer Matrix. Digest of Technical Papers SID International Symposium, 2021, 52, 339-340. | 0.3      | 2         |
| 9  | Progress toward blue-emitting (460–475Ânm) nanomaterials in display applications. Nanophotonics,<br>2021, 10, 1801-1836.                                                                              | 6.0      | 20        |
| 10 | Stable bright perovskite nanoparticle thin porous films for color enhancement in modern liquid crystal displays. Nanoscale, 2021, 13, 6400-6409.                                                      | 5.6      | 16        |
| 11 | Quantumâ€Rod Onâ€Chip LEDs for Display Backlights with Efficacy of 149ÂlmÂW <sup>â^'1</sup> : A Step<br>toward 200ÂlmÂW <sup>â^'1</sup> . Advanced Materials, 2021, 33, e2104685.                     | 21.0     | 30        |
| 12 | A facile non-injection phosphorus-free synthesis of semiconductor nanoparticles using new selenium precursors. CrystEngComm, 2020, 22, 786-793.                                                       | 2.6      | 2         |
| 13 | Pâ€112: Stabilization of Perovskite Quantum Dots in Polymer Matrix in Thin Porous Film for Display Technology. Digest of Technical Papers SID International Symposium, 2020, 51, 1771-1774.           | 0.3      | 0         |
| 14 | Pâ€104: Photoâ€aligned Quantum Rods with Tâ€Shaped Ligands Based on Liquidâ€Crystal Polymer Matrix. Diges of Technical Papers SID International Symposium, 2020, 51, 1745-1747.                       | t<br>0.3 | 3         |
| 15 | Versatile approaches to a library of building blocks based on 5-acylthiazole skeleton. Synthetic Communications, 2020, 50, 3616-3628.                                                                 | 2.1      | 3         |
| 16 | Pâ€111: Red, Green, and Blue Quantum Rod Based Electroluminescent Lightâ€Emitting Diodes. Digest of<br>Technical Papers SID International Symposium, 2020, 51, 1768-1770.                             | 0.3      | 0         |
| 17 | Pâ€155: Stabilization of Perovskite Quantum Dots in Polymer Matrix in Thin Porous Film for Display Technology. Digest of Technical Papers SID International Symposium, 2020, 51, 1971-1974.           | 0.3      | 1         |
| 18 | Crystal structures of the flavonoid Oroxylin A and the regioisomers Negletein and Wogonin. Acta<br>Crystallographica Section C, Structural Chemistry, 2020, 76, 490-499.                              | 0.5      | 2         |

Valerii V Vashchenko

| #  | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | 40.3: Inversion Charge for Memory Display under Passively Addressed Driving using Photoâ€aligned<br>Ferroelectric Liquid Crystal. Digest of Technical Papers SID International Symposium, 2019, 50, 449-451.                                                                 | 0.3  | 0         |
| 20 | Tandem crystallization strategies for resolution of 3,3,3â€ŧrifluorolactic acid [CF 3 CH(OH)COOH] by chiral benzylamines. Chirality, 2019, 31, 979-991.                                                                                                                      | 2.6  | 3         |
| 21 | Pâ€9.11: Photo Aligned Quantum Rod Films by Printing with Extended Color Gamut. Digest of Technical<br>Papers SID International Symposium, 2019, 50, 884-884.                                                                                                                | 0.3  | 0         |
| 22 | Formulation of a Composite System of Liquid Crystals and Lightâ€Emitting Semiconductor Quantum<br>Rods: From Assemblies in Solution to Photoaligned Films. Advanced Materials Technologies, 2019, 4,<br>1900695.                                                             | 5.8  | 13        |
| 23 | 13â€4: Passively Addressed Helixâ€Free Ferroelectric Liquid Crystal for Fast Response Biâ€Stable Display.<br>Digest of Technical Papers SID International Symposium, 2019, 50, 172-175.                                                                                      | 0.3  | 0         |
| 24 | 32â€2: Surface Ligands Optimization of Semiconductor CdSe/CdS Nanorods Aligned in Liquid Crystal Polymer Matrix. Digest of Technical Papers SID International Symposium, 2019, 50, 447-449.                                                                                  | 0.3  | 0         |
| 25 | The nano-scale pitch ferroelectric liquid crystal materials for modern display and photonic<br>application employing highly effective chiral components: Trifluoromethylalkyl diesters of<br>p-terphenyldicarboxylic acid. Journal of Molecular Liquids, 2019, 281, 186-195. | 4.9  | 28        |
| 26 | Photo Aligned Quantum Rod Films by inkjet Printing for modern LCDs with Extended Color Gamut. , 2019, , .                                                                                                                                                                    |      | 0         |
| 27 | Inkjet-printed aligned quantum rod enhancement films for their application in liquid crystal displays.<br>Nanoscale, 2019, 11, 20837-20846.                                                                                                                                  | 5.6  | 26        |
| 28 | Ligand Shell Engineering to Achieve Optimal Photoalignment of Semiconductor Quantum Rods for<br>Liquid Crystal Displays. Advanced Functional Materials, 2019, 29, 1805094.                                                                                                   | 14.9 | 25        |
| 29 | Ferromagnetic nanoparticles in a ferroelectric liquid crystal: Properties of stable colloids in homogeneous cells. Journal of Molecular Liquids, 2018, 267, 353-362.                                                                                                         | 4.9  | 9         |
| 30 | 64â€3: Photo Aligned Quantum Rod films by Inkjet Printing. Digest of Technical Papers SID International Symposium, 2018, 49, 847-849.                                                                                                                                        | 0.3  | 2         |
| 31 | Polymorphism of anhydrous cadmium oxalate CdC2O4. Journal of Alloys and Compounds, 2017, 726, 751-757.                                                                                                                                                                       | 5.5  | 5         |
| 32 | Recent Progress in Selenophenes Synthesis from Inorganic Se-Precursors. Current Organic Synthesis, 2017, 14, .                                                                                                                                                               | 1.3  | 6         |
| 33 | Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal. Soft Matter, 2016, 12, 6601-6609.                                                                                                                               | 2.7  | 33        |
| 34 | Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of<br>terphenyldicarboxylic acid. Journal of Materials Chemistry C, 2016, 4, 10339-10346.                                                                                                    | 5.5  | 16        |
| 35 | Dielectric properties of magnetic nanoparticles' suspension in a ferroelectric liquid crystal. Liquid Crystals, 2015, 42, 334-343.                                                                                                                                           | 2.2  | 21        |
| 36 | Towards New Oligomesogenic Phosphonic Acids as Stabilizers of Nanoparticles Colloids in Nematic<br>Liquid Crystals. Synlett, 2015, 26, 1905-1910.                                                                                                                            | 1.8  | 10        |

## VALERII V VASHCHENKO

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Syntheses of (R)- and (S)-enantiomeric 1,1,1-trifluoromethyl-2-alkanols with high enantiomeric purity controlled through derivatization with l-menthyl phthalate. Tetrahedron Letters, 2015, 56, 5956-5959. | 1.4 | 3         |
| 38 | Impact of dendritic interface modifiers on phase behavior of polyvinylcarbazol-CdSe/ZnS nanocomposite films. Colloid and Polymer Science, 2014, 292, 707-713.                                               | 2.1 | 4         |
| 39 | A synthetic strategy toward branched oligomesogenic phosphonic acids: comparison of alternative pathways. Tetrahedron Letters, 2014, 55, 275-278.                                                           | 1.4 | 9         |
| 40 | Dispersion and aggregation of quantum dots in polymer–inorganic hybrid films. Thin Solid Films, 2013, 537, 226-230.                                                                                         | 1.8 | 24        |
| 41 | Surface magnetic anisotropy of CoFe2O4 nanoparticles with a giant low-temperature hysteresis. Low Temperature Physics, 2013, 39, 365-369.                                                                   | 0.6 | 9         |
| 42 | Thermodynamically Stable Dispersions of Quantum Dots in a Nematic Liquid Crystal. Langmuir, 2013, 29,<br>9301-9309.                                                                                         | 3.5 | 73        |
| 43 | Retro-aldol reactions in micellar media. Monatshefte Für Chemie, 2012, 143, 1545-1549.                                                                                                                      | 1.8 | 8         |
| 44 | Dispersion of magnetic nanoparticles in a polymorphic liquid crystal. Liquid Crystals, 2012, 39, 1512-1526.                                                                                                 | 2.2 | 23        |
| 45 | Piezoelectric and flexoelectric effects in ferroelectric liquid crystals. Physical Review E, 2012, 86, 031705.                                                                                              | 2.1 | 9         |
| 46 | Liquid Crystalline 4,4′-diaryl-2,2′-bithiazoles. Molecular Crystals and Liquid Crystals, 2011, 542, 115/[637]-122/[644].                                                                                    | 0.9 | 3         |
| 47 | Light Scattering of Short Helix Pitch Ferroelectric Liquid Crystal. Molecular Crystals and Liquid Crystals, 2009, 510, 12/[1146]-20/[1154].                                                                 | 0.9 | 6         |
| 48 | New Chiral Dopant Possessing High Twisting Power. Molecular Crystals and Liquid Crystals, 2009, 509, 300/[1042]-308/[1050].                                                                                 | 0.9 | 30        |
| 49 | Unusual pathway of alkylation of 2-(4-bromobenzylidene)-p-menthan-3-one with ethyl bromoacetate.<br>Russian Chemical Bulletin, 2007, 56, 2506-2509.                                                         | 1.5 | 1         |
| 50 | Influence of Chiral Dopant Molecular Structure on Ferroelectric Liquid Crystal Parameters.<br>Ferroelectrics, 2006, 343, 33-40.                                                                             | 0.6 | 2         |
| 51 | Synthesis of 4-[(1R,4R)-3-Oxo-p-menthan-2-ylidenemethyl]benzoic Acid and Its Esters. Russian Journal of<br>General Chemistry, 2005, 75, 622-627.                                                            | 0.8 | 2         |
| 52 | New (1R,4R)-2-arylidene-p-menthan-3-ones with a bridging ester group in the arylidene fragment.<br>Synthesis and behavior in liquid-crystalline systems. Russian Chemical Bulletin, 2003, 52, 2406-2418.    | 1.5 | 7         |
| 53 | Ferroelectric liquid crystal mixtures containing chiral ether and ester compounds with the 2-arylidene-p-menthan-3-one skeleton. , 2002, , .                                                                |     | 4         |
|    |                                                                                                                                                                                                             |     |           |

54 Induced cholesteric systems based on some cyano derivatives as host phases. , 2002, , .

0

VALERII V VASHCHENKO

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Chiral ethers with the 2-arylidene- p -menthan-3-one skeleton as components of induced cholesteric systems. , 2002, 4759, 159.                                                                                                      |     | 0         |
| 56 | Molecular and crystal structures of 1R,4R-cis-2-(4-hydroxybenzylidene)-p-menthan-3-one.<br>Crystallography Reports, 2002, 47, 805-811.                                                                                              | 0.6 | 1         |
| 57 | Molecular and Crystal Structure of (1R)-2-arylidene-p-(4-menthen)-3-ones. Journal of Structural<br>Chemistry, 2002, 43, 330-337.                                                                                                    | 1.0 | 2         |
| 58 | Title is missing!. Journal of Structural Chemistry, 2002, 43, 1011-1018.                                                                                                                                                            | 1.0 | 0         |
| 59 | <title>Molecular and crystalline structure of some new derivatives of p-menthane-3-ones: chiral components of liquid crystalline systems</title> . , 2001, , .                                                                      |     | 0         |
| 60 | <title>New chiral E and Z isomers of the 1R,4R-2-arylidene-p-menthane-3-ones in induced cholesteric&lt;br&gt;and ferroelectric liquid crystals</title> . , 2001, , .                                                                |     | 4         |
| 61 | Title is missing!. Journal of Structural Chemistry, 2001, 42, 84-91.                                                                                                                                                                | 1.0 | 0         |
| 62 | Conformations of Z- and E-isomers of some chiral (1R,4R)-2-arylidene-p-menthan-3-ones. Russian<br>Chemical Bulletin, 2001, 50, 1596-1604.                                                                                           | 1.5 | 5         |
| 63 | Molecular and crystal structures of 1R,4R-cis-2-(4-phenylbenzylidene)-n-menthan-3-one.<br>Crystallography Reports, 2001, 46, 214-218.                                                                                               | 0.6 | 3         |
| 64 | Molecular and crystal structures of chiral<br>2-(4-phenylbenzylidene)-3-methyl-6-isopropylcyclohexanone 6-bromo derivative. Crystallography<br>Reports, 2001, 46, 980-985.                                                          | 0.6 | 2         |
| 65 | New Chiral Ether Derivatives of 2-Arylidene- <i>p</i> -Menthane-3-Ones as Components of Induced Ferroelectric Systems. Molecular Crystals and Liquid Crystals, 2001, 364, 557-565.                                                  | 0.3 | 3         |
| 66 | New Chiral Esters, Diastereomeric 2-(4-Carboxybenzylidene)-p-Menthane-3-One Derivatives, as<br>Components of LC Systems with Induced Helical Structure. Molecular Crystals and Liquid Crystals,<br>2001, 364, 691-701.              | 0.3 | 6         |
| 67 | New N-Arylidene (S)-1-Phenylethylamines as the Components of Induced Short-Pitch Cholesterics.<br>Molecular Crystals and Liquid Crystals, 2001, 357, 43-54.                                                                         | 0.3 | 6         |
| 68 | Rearrangement products of some 1R,4R-2-arylidene-p-menthan-3-ones in acidic media, their structures, and conformational analysis. Russian Chemical Bulletin, 2000, 49, 1218-1230.                                                   | 1.5 | 3         |
| 69 | Molecular and crystal structures of stereoisomeric2R,3R,6S-2-(1′S-hydroxy-1′-biphenylyl)-<br>and2R,3R,6S-2-(1′R-hydroxy-1′-biphenylyl)methyl-3-methyl-6-isopropylcyclohexanones. Russian Chemical<br>Bulletin, 1998, 47, 2182-2188. | 1.5 | 1         |
| 70 | <title>Liquid crystal composites with PSCT</title> . , 1998, , .                                                                                                                                                                    |     | 0         |
| 71 | Chiral ?-hydroxycarbonyl compounds based on (?)-menthone: structure and behavior in liquid crystalline systems. Russian Chemical Bulletin, 1995, 44, 1200-1209.                                                                     | 1.5 | 3         |
| 72 | Molecular structure and conformational analysis of chirai<br>(?)-3-(4-bromobenzylidene)-1-isopropyl-2-methoxy-4-methylcyclohexene. Russian Chemical Bulletin, 1995,<br>44, 2331-2336.                                               | 1.5 | 0         |

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Photosensitive chiral dopants with high twisting power. Liquid Crystals, 1994, 16, 877-882.                                                                      | 2.2 | 78        |
| 74 | Use of X-ray diffraction data in stereochemical studies of (â^')-menthone reactions with aromatic aldehydes. Journal of Structural Chemistry, 1994, 35, 688-696. | 1.0 | 3         |