Arthur Korte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7578868/publications.pdf

Version: 2024-02-01

35 papers

8,890 citations

218677 26 h-index 35 g-index

54 all docs

54 docs citations

times ranked

54

12067 citing authors

#	Article	IF	CITATIONS
1	<i>cis</i> â€prenyltransferase 3 and $\hat{1}\pm\hat{1}^2\hat{a}$ €hydrolase are new determinants of dolichol accumulation in Arabidopsis. Plant, Cell and Environment, 2022, 45, 479-495.	5.7	4
2	Plant roots employ cell-layer-specific programs to respond to pathogenic and beneficial microbes. Cell Host and Microbe, 2021, 29, 299-310.e7.	11.0	48
3	Signatures of antagonistic pleiotropy in a bacterial flagellin epitope. Cell Host and Microbe, 2021, 29, 620-634.e9.	11.0	44
4	Genetic mapping of the early responses to salt stress in <i>Arabidopsis thaliana</i> Plant Journal, 2021, 107, 544-563.	5.7	22
5	Getting the metabolites right. ELife, 2021, 10, .	6.0	2
6	Global Genetic Heterogeneity in Adaptive Traits. Molecular Biology and Evolution, 2021, 38, 4822-4831.	8.9	27
7	AraPheno and the AraGWAS Catalog 2020: a major database update including RNA-Seq and knockout mutation data for Arabidopsis thaliana. Nucleic Acids Research, 2020, 48, D1063-D1068.	14.5	44
8	Imputation of 3 million SNPs in the Arabidopsis regional mapping population. Plant Journal, 2020, 102, 872-882.	5.7	34
9	A systematic comparison of chloroplast genome assembly tools. Genome Biology, 2020, 21, 254.	8.8	42
10	Using Local Convolutional Neural Networks for Genomic Prediction. Frontiers in Genetics, 2020, 11, 561497.	2.3	25
11	Phantom Epistasis in Genomic Selection: On the Predictive Ability of Epistatic Models. G3: Genes, Genomes, Genetics, 2020, 10, 3137-3145.	1.8	27
12	Systems genomics approaches provide new insights into Arabidopsis thaliana root growth regulation under combinatorial mineral nutrient limitation. PLoS Genetics, 2019, 15, e1008392.	3.5	46
13	The AraGWAS Catalog: a curated and standardized Arabidopsis thaliana GWAS catalog. Nucleic Acids Research, 2018, 46, D1150-D1156.	14.5	83
14	Weighted Gene Co-expression Network Analysis of Endometriosis and Identification of Functional Modules Associated With Its Main Hallmarks. Frontiers in Genetics, 2018, 9, 453.	2.3	82
15	Eco-Metabolomics and Metabolic Modeling: Making the Leap From Model Systems in the Lab to Native Populations in the Field. Frontiers in Plant Science, 2018, 9, 1556.	3.6	28
16	Natural allelic variation of the AZI1 gene controls root growth under zinc-limiting condition. PLoS Genetics, 2018, 14, e1007304.	3.5	47
17	Natural variation in stomata size contributes to the local adaptation of waterâ€use efficiency in <i>Arabidopsis thaliana</i> . Molecular Ecology, 2018, 27, 4052-4065.	3.9	102
18	AraPheno: a public database for <i>Arabidopsis thaliana</i> phenotypes. Nucleic Acids Research, 2017, 45, D1054-D1059.	14.5	91

#	Article	IF	Citations
19	Genetic Components of Root Architecture Remodeling in Response to Salt Stress. Plant Cell, 2017, 29, 3198-3213.	6.6	156
20	Leaf Growth Response to Mild Drought: Natural Variation in Arabidopsis Sheds Light on Trait Architecture. Plant Cell, 2016, 28, 2417-2434.	6.6	83
21	Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions. Cell, 2016, 166, 492-505.	28.9	594
22	1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell, 2016, 166, 481-491.	28.9	1,107
23	Multiple alleles at a single locus control seed dormancy in Swedish Arabidopsis. ELife, 2016, 5, .	6.0	57
24	The advantages and limitations of trait analysis with GWAS: a review. Plant Methods, 2013, 9, 29.	4.3	1,229
25	Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nature Genetics, 2013, 45, 884-890.	21.4	371
26	A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nature Genetics, 2012, 44, 1066-1071.	21.4	380
27	An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nature Genetics, 2012, 44, 825-830.	21.4	884
28	Arabidopsis thaliana AUCSIA-1 Regulates Auxin Biology and Physically Interacts with a Kinesin-Related Protein. PLoS ONE, 2012, 7, e41327.	2.5	20
29	A Map of Local Adaptation in <i>Arabidopsis thaliana</i> . Science, 2011, 334, 86-89.	12.6	617
30	Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant Journal, 2010, 61, 25-35.	5.7	170
31	Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science, 2009, 324, 1064-1068.	12.6	2,017
32	Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. Plant Journal, 2008, 54, 806-819.	5.7	91
33	Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant Journal, 2007, 49, 740-749.	5.7	120
34	GER1,a GDSL Motif-Encoding Gene from Rice is a Novel Early Light- and Jasmonate-Induced Gene. Plant Biology, 2007, 9, 32-40.	3.8	39
35	Impaired Induction of the Jasmonate Pathway in the Rice Mutant hebiba Â. Plant Physiology, 2003, 133, 1820-1830.	4.8	128