Li-Xin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7578687/publications.pdf

Version: 2024-02-01

186265 223800 2,287 70 28 46 citations h-index g-index papers 82 82 82 1909 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of Spiro Diphosphines and Their Application in Asymmetric Hydrogenation of Ketones. Journal of the American Chemical Society, 2003, 125, 4404-4405.	13.7	275
2	Organocatalytic stereocontrolled synthesis of $3,3\hat{a}\in^2$ -pyrrolidinyl spirooxindoles by [3+2] annulation of isocyanoesters with methyleneindolinones. Chemical Communications, 2012, 48, 5175.	4.1	123
3	Highly organocatalytic asymmetric Michael–ketone aldol–dehydration domino reaction: straightforward approach to construct six-membered spirocyclic oxindoles. Chemical Communications, 2010, 46, 8064.	4.1	117
4	A highly organocatalytic stereoselective double Michael reaction: efficient construction of optically enriched spirocyclic oxindoles. Chemical Communications, 2011, 47, 5593-5595.	4.1	107
5	Asymmetric Michael Addition of α-Substituted Isocyanoacetates with Maleimides Catalyzed by Chiral Tertiary Amine Thiourea. Journal of Organic Chemistry, 2012, 77, 2947-2953.	3.2	85
6	Asymmetric Synthesis of 3,3′-Spirooxindoles Fused with Cyclobutanes through Organocatalytic Formal [2 + 2] Cycloadditions under H-Bond-Directing Dienamine Activation. Organic Letters, 2014, 16, 6436-6439.	4.6	77
7	Chiral primary amine thiourea promoted highly enantioselective Michael reactions of isobutylaldehyde with maleimides. Tetrahedron, 2010, 66, 8928-8932.	1.9	70
8	An organocatalytic asymmetric sequential allylic alkylation–cyclization of Morita–Baylis–Hillman carbonates and 3-hydroxyoxindoles. Chemical Communications, 2013, 49, 9422.	4.1	68
9	Synthetic Improvements in the Preparation of Clopidogrel. Organic Process Research and Development, 2007, 11, 487-489.	2.7	64
10	Highly asymmetric Michael additions of α,α-disubstituted aldehydes to β-nitroalkenes promoted by chiral pyrrolidine–thiourea bifunctional catalysts. Tetrahedron Letters, 2010, 51, 2803-2805.	1.4	56
11	A cinchona alkaloid catalyzed enantioselective sulfa-Michael/aldol cascade reaction of isoindigos: construction of chiral bispirooxindole tetrahydrothiophenes with vicinal quaternary spirocenters. Organic and Biomolecular Chemistry, 2015, 13, 6371-6379.	2.8	56
12	Noyori's Tsâ€DPEN Ligand: Simple yet Effective Catalyst for the Highly Enantioselective Michael Addition of Acetone to Nitroalkenes. European Journal of Organic Chemistry, 2010, 2010, 1849-1853.	2.4	55
13	Asymmetric hydroxyamination of oxindoles catalyzed by chiral bifunctional tertiary aminethiourea: construction of 3-amino-2-oxindoles with quaternary stereocenters. Organic and Biomolecular Chemistry, 2012, 10, 236-239.	2.8	48
14	Isatin $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ and e^2 -Cyclic Azomethine Imine 1,3-Dipole and Abnormal [3 + 2]-Cycloaddition with Maleimide in the Presence of 1,4-Diazabicyclo[2.2.2] octane. Organic Letters, 2017, 19, 646-649.	4.6	48
15	Effective construction of quaternary stereocenters by highly enantioselective α-amination of branched aldehydes. Organic and Biomolecular Chemistry, 2010, 8, 4524.	2.8	44
16	An organocatalytic domino Michael-alkylation reaction: highly enantioselective construction of spiro-cyclopentanoneoxindoles and tetronic acid scaffolds. Chemical Communications, 2014, 50, 14601-14604.	4.1	44
17	Enantioselective α-Amination of Branched Aldehydes Promoted by Simple Chiral Primary Amino Acids. Journal of Organic Chemistry, 2011, 76, 4661-4664.	3.2	43
18	Highly effective and enantioselective Michael addition of 4-hydroxycoumarin to $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones promoted by simple chiral primary amine thiourea bifunctional catalysts. Tetrahedron Letters, 2011, 52, 1566-1568.	1.4	43

#	Article	IF	CITATIONS
19	Preparation the Key Intermediate of Angiotensinâ€Converting Enzyme (ACE) Inhibitors: High Enantioselective Production of Ethyl (⟨i⟩R⟨/i⟩)â€2â€Hydroxyâ€4â€Phenylbutyrate with ⟨i⟩Candida boidinii⟨/i⟩ CIOC21. Advanced Synthesis and Catalysis, 2008, 350, 426-430.	4.3	42
20	Metalâ€Free Asymmetric 1,3â€Dipolar Cycloaddition of <i>N</i> â€Arylmaleimides to Azomethine Ylides Catalyzed by Chiral Tertiary Amine Thiourea. European Journal of Organic Chemistry, 2011, 2011, 4472-4478.	2.4	42
21	Highly effective and enantioselective Phospho-Aldol reaction of diphenyl phosphite with N-alkylated isatins catalyzed by quinine. Tetrahedron Letters, 2011, 52, 1157-1160.	1.4	38
22	An unprecedented base-promoted domino reaction of methyleneindolinones and N-tosyloxycarbamates for the construction of bispirooxindoles and spiroaziridine oxindoles. Chemical Communications, 2015, 51, 10726-10729.	4.1	37
23	Isatin <i>N</i> , <i>N</i> ′-Cyclic Azomethine Imine 1,3-Dipole and Base Catalyzed Michael Addition with β-Nitrostyrene via C3 Umpolung of Oxindole. Organic Letters, 2017, 19, 3051-3054.	4.6	35
24	Highly enantioselective direct vinylogous Michael addition of \hat{l}^3 -substituted deconjugated butenolides to maleimides catalyzed by chiral squaramides. RSC Advances, 2013, 3, 16973.	3.6	34
25	Preparation of key intermediates of adrenergic receptor agonists: Highly enantioselective production of (R)-α-halohydrins with Saccharomyces cerevisiae CGMCC 2.396. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 1-5.	1.8	32
26	Highly effective and enantioselective α-amination of aldehydes promoted by chiral proline amide–thiourea bifunctional catalysts. Tetrahedron Letters, 2010, 51, 4870-4873.	1.4	30
27	Organocatalytic direct asymmetric vinylogous Mannich reaction of \hat{l}^3 -butenolides with isatin-derived ketimines. RSC Advances, 2014, 4, 27286.	3.6	30
28	Organocatalytic Enantioselective Michael/Cyclization Domino Reaction between 3-Amideoxindoles and \hat{l}_{\pm} , \hat{l}^2 -Unsaturated Aldehydes: One-Pot Preparation of Chiral Spirocyclic Oxindole- \hat{l}^3 -lactams. Journal of Organic Chemistry, 2017, 82, 3908-3916.	3.2	29
29	Organocatalytic Asymmetric Annulation between Hydroxymaleimides and Nitrosoarenes: Stereoselective Preparation of Chiral Quaternary <i>N</i> -Hydroxyindolines. Organic Letters, 2017, 19, 2805-2808.	4.6	27
30	Organocatalytic and enantioselective [4+2] cyclization between hydroxymaleimides and <i>ortho</i> -hydroxyphenyl <i>para</i> -quinone methide-selective preparation of chiral hemiketals. Chemical Communications, 2020, 56, 14825-14828.	4.1	27
31	Enantiocomplementary preparation of (S)- and (R)-mandelic acid derivatives via $\hat{l}\pm$ -hydroxylation of 2-arylacetic acid derivatives and reduction of $\hat{l}\pm$ -ketoester using microbial whole cells. Tetrahedron: Asymmetry, 2007, 18, 2537-2540.	1.8	25
32	Efficient asymmetric Michael reaction of 2-oxindole-3-carboxylate esters with maleimides catalyzed by cinchonidine. Tetrahedron, 2014, 70, 3478-3484.	1.9	25
33	An enantioselective synthesis of spiro-oxindole-based 3,4-dihydropyrroles via a Michael/cyclization cascade of 3-aminooxindoles with 2-enoylpyridines. Organic and Biomolecular Chemistry, 2017, 15, 8518-8522.	2.8	25
34	Highly enantioselective aldol reaction of acetone with \hat{l}^2 , \hat{l}^3 -unsaturated \hat{l} ±-keto esters promoted by simple chiral primary \hat{a} \in "tertiary diamine catalysts. Organic and Biomolecular Chemistry, 2011, 9, 4774.	2.8	24
35	Direct Asymmetric Vinylogous Mannich Reaction of 3,4-Dihalofuran-2(5H)-one with Aldimine Catalyzed by Quinine. Journal of Organic Chemistry, 2012, 77, 8338-8343.	3.2	24
36	Asymmetric Michael/cyclization tandem reaction of 4-hydroxycoumarin with \hat{l}^2 -nitroalkenes catalyzed by chiral bifunctional thioureas. Organic and Biomolecular Chemistry, 2013, 11, 1286.	2.8	24

#	Article	IF	Citations
37	Base Catalyzed Abnormal [3 + 2]-Cycloaddition between Isatin <i>N</i> , <i>N</i> , <i>N</i> ꀲ-Cyclic Azomethine Imine 1,3-Dipole and 3-Methyleneoxindole for the One-Step Construction of Tetracyclic Bispirooxindoles. Journal of Organic Chemistry, 2020, 85, 3921-3928.	3.2	23
38	Effective asymmetric Michael addition of acetone to nitroalkenes promoted by chiral proline amide-thiourea bifunctional catalysts. Arkivoc, 2010, 2010, 340-351.	0.5	18
39	Asymmetric Michael Addition of Aromatic Ketones to Nitroolefins Catalyzed by Simple Chiral Bifunctional Primary Amine-Thioureas. Letters in Organic Chemistry, 2010, 7, 367-372.	0.5	17
40	Enantioselective Diels–Alder reaction of anthrone and maleimide catalyzed by a simple chiral tertiary amine. Tetrahedron, 2013, 69, 1229-1233.	1.9	17
41	Organocatalytic asymmetric cascade Michael/hemiketalization/retro-aldol reaction of 3-acetyl-oxindole with \hat{l}^2 , \hat{l}^3 -unsaturated ketoesters catalyzed by bifunctional amino-squaramides. Tetrahedron, 2014, 70, 8665-8671.	1.9	16
42	An Improved and Enantioselective Preparation of the Telaprevir Bicyclic [3.3.0] Proline Intermediate and Reuse of Unwanted Enantiomer. Organic Process Research and Development, 2016, 20, 320-324.	2.7	14
43	Organocatalytic enantioselective aza-Friedelâ \in "Crafts reaction between benzothiazolimines and 2-naphthols for the preparation of chiral 2 â \in 2-aminobenzothiazolomethyl naphthols. Organic and Biomolecular Chemistry, 2021, 19, 7690-7694.	2.8	14
44	Enantioselective Nitroso Aldol Intramolecular Transesterification Cyclization Domino Reaction for Highly Effective Construction of Chiral Spirooxindoles. European Journal of Organic Chemistry, 2016, 2016, 5437-5444.	2.4	13
45	A novel asymmetric organocatalytic Michael–aldol–dehydration domino reaction for the construction of spirocyclic benzofuranones. Tetrahedron, 2013, 69, 9303-9308.	1.9	12
46	Effective and diastereoselective preparation of dispiro[cyclopent-3′-ene]bisoxindoles <i>via</i> novel [3 + 2] annulation of isoindigos and MBH carbonates. Organic and Biomolecular Chemistry, 2018, 16, 1297-1304.	2.8	12
47	Organocatalytic Asymmetric Double Michael Reaction of Benzofuranone with Dienones to Construct Spirocyclic Benzofuranones. Chinese Journal of Chemistry, 2012, 30, 2703-2706.	4.9	11
48	Organocatalytic Enantioselective Michael Addition between 3-(3-hydroxy-1 <i>H</i> -pyrazol-1-yl)Oxindole and \hat{l}^2 <i>-</i> -Nitrostyrene for the Preparation of Chiral Disubstituted Oxindoles. Journal of Organic Chemistry, 2020, 85, 9290-9300.	3.2	11
49	A highly asymmetric direct aldol reaction catalyzed by chiral proline amide – thiourea bifunctional catalysts. Canadian Journal of Chemistry, 2011, 89, 1312-1318.	1.1	10
50	An Improved and Economical Process for the Manufacture of the Key Intermediate of Aliskiren, a New Potent Renin Inhibitor. Organic Process Research and Development, 2013, 17, 1458-1462.	2.7	10
51	A New Cyclization/Decarboxylation Reaction of Isatins with Acyl Chlorides for the Facile Synthesis of 3â€Alkenylâ€Oxindoles. Chinese Journal of Chemistry, 2014, 32, 844-852.	4.9	10
52	Asymmetric Double Michael Reaction Catalyzed by Simple Primary Amine Catalysts: A Straightforward Approach to Construct Spirocyclic Oxindoles. Chinese Journal of Chemistry, 2012, 30, 1185-1188.	4.9	9
53	Improved Preparation of Tyramine by Curtius Rearrangement. Chinese Journal of Chemistry, 2009, 27, 433-436.	4.9	8
54	Chiral αâ€Arylethanamines: An Organocatalyst for the Enantioselective αâ€Amination of Branched Aldehydes. European Journal of Organic Chemistry, 2013, 2013, 2864-2868.	2.4	8

#	Article	IF	CITATIONS
55	An unexpected metal-free DMAP catalyzed Michael addition–elimination domino reaction between 2-naphthols and bromomaleimides for the effective construction of 3-arylmaleimides. Tetrahedron Letters, 2016, 57, 1261-1264.	1.4	8
56	Novel Preparation of H1Receptor Antagonist Fexofenadine. Organic Process Research and Development, 2010, 14, 1464-1468.	2.7	6
57	Construction of Quaternary Stereocenters: Asymmetric αâ€Amination of Branched Aldehydes Catalyzed by Monoimide Substituted Cyclohexaneâ€1,2â€Diamines. Chirality, 2013, 25, 668-672.	2.6	6
58	Direct enantioselective amination of \hat{l} ±-ketoester catalyzed by tertiary amine thiourea: a new approach to chiral \hat{l} ±-hydroxy- \hat{l} 2-amino acid. Tetrahedron Letters, 2015, 56, 4220-4223.	1.4	6
59	3-Amino Oxindole Schiff Base as Synthon for Enantioselective Preparation of Spiro[oxindol-3,2′-pyrrol] from a Michael/Cyclization Reaction Catalyzed by a Bifunctional Cinchona. Organic Letters, 2021, 23, 2227-2231.	4.6	6
60	Spiro Scaffold Chiral Organocatalyst of 3,2′-Pyrrolidinyl Spiro-oxindole Amine and Its Catalytic Evaluation in the Enantioselective Aldol Condensation between 3-(3-Hydroxy-1 <i>H</i> -pyrazol-1-yl)-Oxindole and Paraformaldehyde. Journal of Organic Chemistry, 2021, 86, 17371-17379.	3.2	6
61	New 1,3-dipolar cycloaddition/dehydrogenation of azomethines ylides and azodicarboxylates: direct and effective construction of unsaturated 1,2,4-triazolines. Tetrahedron Letters, 2012, 53, 2985-2988.	1.4	5
62	A base-catalyzed domino reaction between isoindigos and α-alkylidene succinimides—convenient preparation of highly steric bispirooxindoles. Organic and Biomolecular Chemistry, 2020, 18, 9511-9515.	2.8	5
63	Optimized Synthetic Route for Enantioselective Preparation of (S)-Metolachlor from Commercially Available (R)-Propylene Oxide. Organic Process Research and Development, 2017, 21, 1682-1688.	2.7	4
64	New scaffold organocatalysts of chiral 3,2′-pyrrolidinyl spirooxindoles promoted enantioselective aldol condensation between isatins and acetone. Tetrahedron Letters, 2022, 97, 153780.	1.4	4
65	An efficient and enantioselective Michael addition of aromatic oximes to ⟨i⟩α⟨ i⟩,⟨i⟩β⟨ i⟩â€unsaturated aldehydes promoted by a chiral diamine catalyst derived from ⟨i⟩α⟨ i⟩,⟨i⟩α⟨ i⟩â€diphenyl prolinol. Chirality, 2017, 29, 369-375.	2.6	3
66	Substituted (E)-2-Methylene-3,4-cyclohexenones through Direct and Convenient Synthesis from Cyclohexenone-MBH Alcohol in the Presence of DMAP. European Journal of Organic Chemistry, 2019, 2019, 715-719.	2.4	3
67	Organocatalystâ€promoted Diastereoselective and Enantioselective Michael Addition/Hemiketalization Reaction between Hydroxymaleimide and Quinone. Asian Journal of Organic Chemistry, 2021, 10, 1713-1717.	2.7	3
68	Enantioselective Organocatalyzed Mannich Reaction between Benzothiazolimines and $\hat{l}\pm\hat{a}\in B$ enzylidene Succinimides for the Preparation of Chiral Benzothiazol Succinimides. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	3
69	Facile Catalyst-Free Allylation of Isatins Under Mild Conditions in Dimethylformamide. Letters in Organic Chemistry, 2011, 8, 352-357.	0.5	2
70	Organocatalytic enantioselective Diels–Alder reaction between hydroxymaleimides and ⟨i⟩in situ⟨/i⟩ generated nitrosoalkenes for direct preparation of chiral hemiketals with 1,2-oxazine skeleton. Organic Chemistry Frontiers, 2021, 8, 6215-6219.	4.5	2