Fabian Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7578644/publications.pdf

Version: 2024-02-01

38	968	17 h-index	30
papers	citations		g-index
38	38	38	1349
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. LWT - Food Science and Technology, 2017, 75, 72-77.	2.5	91
2	Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MS. Food Chemistry, 2018, 245, 508-517.	4.2	77
3	Influence of fruit juice processing on anthocyanin stability. Food Research International, 2017, 100, 354-365.	2.9	75
4	Effects of carrier agents on powder properties, stability of carotenoids, and encapsulation efficiency of goldenberry (Physalis peruviana L.) powder produced by co-current spray drying. Current Research in Food Science, 2020, 3, 73-81.	2.7	69
5	Characterization of Phenolic Compounds in Brazilian Pepper (<i>Schinus terebinthifolius</i> Raddi) Exocarp. Journal of Agricultural and Food Chemistry, 2014, 62, 6219-6226.	2.4	51
6	Interactions of Anthocyanins with Pectin and Pectin Fragments in Model Solutions. Journal of Agricultural and Food Chemistry, 2019, 67, 9344-9353.	2.4	47
7	Sensory and Chemical Characterization of Phenolic Polymers from Red Wine Obtained by Gel Permeation Chromatography. American Journal of Enology and Viticulture, 2013, 64, 15-25.	0.9	44
8	Effect of enzyme-assisted extraction on the chilled storage stability of bilberry (Vaccinium myrtillus) Tj ETQq0 0 35-41.	0 rgBT /Ον 2.9	erlock 10 Tf 5 43
9	Effects of thermal pasteurization and ultrasound treatment on the peroxidase activity, carotenoid composition, and physicochemical properties of goldenberry (Physalis peruviana L.) puree. LWT - Food Science and Technology, 2019, 100, 69-74.	2.5	37
10	Influence of Accelerated Solvent Extraction and Ultrasound-Assisted Extraction on the Anthocyanin Profile of Different $\langle i \rangle$ Vaccinium $\langle i \rangle$ Species in the Context of Statistical Models for Authentication. Journal of Agricultural and Food Chemistry, 2015, 63, 7532-7538.	2.4	29
11	Profiling of iridoid glycosides in Vaccinium species by UHPLC-MS. Food Research International, 2017, 100, 462-468.	2.9	28
12	Pecan (<i>Carya illinoinensis</i> (Wagenh.) K. Koch) Nut Shell as an Accessible Polyphenol Source for Active Packaging and Food Colorant Stabilization. ACS Sustainable Chemistry and Engineering, 2020, 8, 6700-6712.	3.2	25
13	Effects of ultrasound on the enzymatic degradation of pectin. Ultrasonics Sonochemistry, 2021, 72, 105465.	3.8	24
14	Sensory and Color Changes Induced by Microoxygenation Treatments of Pinot noir before and after Malolactic Fermentation. American Journal of Enology and Viticulture, 2010, 61, 474-485.	0.9	22
15	Determination of polyphenol and crude nutrient content and nutrient digestibility of dried and ensiled white and red grape pomace cultivars. Archives of Animal Nutrition, 2015, 69, 187-200.	0.9	22
16	Polyphenol–Protein–Polysaccharide Interactions in the Presence of Carboxymethyl Cellulose (CMC) in Wine-Like Model Systems. Journal of Agricultural and Food Chemistry, 2019, 67, 7428-7434.	2.4	22
17	Structure Elucidation of Peonidin 3,7- <i>O</i> -β-Diglucoside Isolated from Garnacha Tintorera (Vitis) Tj ETQq1	1 0. <u>7</u> 84314	1 rgBT /Overlo
18	Influence of Glutathione on Yeast Fermentation Efficiency under Copper Stress. Journal of Agricultural and Food Chemistry, 2019, 67, 10913-10920.	2.4	18

#	Article	IF	CITATIONS
19	Variation of pyranoanthocyanins in red wines of different varieties and vintages and the impact of pinotin A addition on their color parameters. European Food Research and Technology, 2009, 229, 689-696.	1.6	17
20	Stable Benzacridine Pigments by Oxidative Coupling of Chlorogenic Acid with Amino Acids and Proteins: Toward Natural Product-Based Green Food Coloring. Journal of Agricultural and Food Chemistry, 2017, 65, 6519-6528.	2.4	17
21	Influence of Different Fermentation Strategies on the Phenolic Profile of Bilberry Wine (<i>Vaccinium) Tj ETQq1</i>	1 0,78431 2.4	4 rgBT /Over
22	Oxidation of Wine Polyphenols by Secretomes of Wild <i>Botrytis cinerea</i> Strains from White and Red Grape Varieties and Determination of Their Specific Laccase Activity. Journal of Agricultural and Food Chemistry, 2017, 65, 10582-10590.	2.4	17
23	Impact of Different Pasteurization Techniques and Subsequent Ultrasonication on the In Vitro Bioaccessibility of Carotenoids in Valencia Orange (Citrus sinensis (L.) Osbeck) Juice. Antioxidants, 2020, 9, 534.	2.2	17
24	Impact of Xanthylium Derivatives on the Color of White Wine. Molecules, 2017, 22, 1376.	1.7	16
25	Site-specific hydrolysis of chlorogenic acids by selected Lactobacillus species. Food Research International, 2018, 109, 426-432.	2.9	16
26	Synthesis and structure elucidation of ethyliden-linked anthocyanin — Flavan-3-ol oligomers. Food Research International, 2014, 65, 69-76.	2.9	13
27	Influence of common and excessive enzymatic treatment on juice yield and anthocyanin content and profile during bilberry (Vaccinium myrtillus L.) juice production. European Food Research and Technology, 2017, 243, 59-68.	1.6	13
28	Noncovalent Polyphenol–Macromolecule Interactions and Their Effects on the Sensory Properties of Foods. Journal of Agricultural and Food Chemistry, 2022, 70, 72-78.	2.4	13
29	Application of Crude Pomace Powder of Chokeberry, Bilberry, and Elderberry as a Coloring Foodstuff. Molecules, 2021, 26, 2689.	1.7	12
30	Structure elucidation and tentative formation pathway of a red colored enzymatic oxidation product of caffeic acid. Food Chemistry, 2019, 297, 124932.	4.2	11
31	Evolution of Anthocyanin-Derived Compounds during Micro-Oxygenation of Red Wines with Different Anthocyanin-Flavanol Ratios. ACS Symposium Series, 2015, , 253-274.	0.5	10
32	HPLC-DAD-MS and Antioxidant Profile of Fractions from Amontillado Sherry Wine Obtained Using High-Speed Counter-Current Chromatography. Foods, 2021, 10, 131.	1.9	9
33	Profiling of phenolic compounds in desiccationâ€ŧolerant and nonâ€desiccationâ€ŧolerant Linderniaceae. Phytochemical Analysis, 2021, 32, 521-529.	1.2	7
34	Effect of Structural Transformations on Precipitability and Polarity of Red Wine Phenolic Polymers. American Journal of Enology and Viticulture, 0, , ajev.2021.20064.	0.9	7
35	Valorization of rose (Rosa damascena Mill.) by-product: polyphenolic characterization and potential food application. European Food Research and Technology, 2022, 248, 2351-2358.	1.6	6
36	Influence of Grape Cell Wall Polysaccharides on the Extraction of Polyphenols during Fermentation in Microvinifications. Journal of Agricultural and Food Chemistry, 2022, 70, 9117-9131.	2.4	6

FABIAN WEBER

#	Article	IF	CITATIONS
37	Stilbenes Can Impair Malolactic Fermentation with Strains of <i>Oenococcus oeni</i> and <i>Lactobacillus plantarum</i> American Journal of Enology and Viticulture, 2021, 72, 56-63.	0.9	2
38	Food Research International Special Issue Phytochemical Profiles. Food Research International, 2017, 100, 325.	2.9	0