Francis D Pope

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/757850/publications.pdf

Version: 2024-02-01

103 papers 3,407 citations

147801 31 h-index 52 g-index

149 all docs

149 docs citations

times ranked

149

4144 citing authors

#	Article	IF	CITATIONS
1	Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmospheric Measurement Techniques, 2018, 11, 709-720.	3.1	253
2	The viscosity of atmospherically relevant organic particles. Nature Communications, 2018, 9, 956.	12.8	252
3	Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures. Chemical Reviews, 2015, 115, 4115-4156.	47.7	196
4	Direct imaging of changes in aerosol particle viscosity upon hydration and chemical aging. Chemical Science, 2016, 7, 1357-1367.	7.4	101
5	Pollen grains are efficient cloud condensation nuclei. Environmental Research Letters, 2010, 5, 044015.	5.2	91
6	Studies of Single Aerosol Particles Containing Malonic Acid, Glutaric Acid, and Their Mixtures with Sodium Chloride. I. Hygroscopic Growth. Journal of Physical Chemistry A, 2010, 114, 5335-5341.	2.5	88
7	Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results. Atmospheric Chemistry and Physics, 2013, 13, 9233-9268.	4.9	88
8	60 years of UK visibility measurements: impact of meteorology and atmospheric pollutants on visibility. Atmospheric Chemistry and Physics, 2017, 17, 2085-2101.	4.9	86
9	Effects of short-term exposure to particulate matter air pollution on cognitive performance. Scientific Reports, 2019, 9, 8237.	3.3	84
10	Ultraviolet Absorption Spectrum of Chlorine Peroxide, ClOOCl. Journal of Physical Chemistry A, 2007, 111, 4322-4332.	2.5	83
11	Stratospheric aerosol particles and solar-radiation management. Nature Climate Change, 2012, 2, 713-719.	18.8	81
12	Traffic pollution: A search for solutions for a city like Nairobi. Cities, 2018, 82, 100-107.	5.6	74
13	Fluorescent lifetime imaging of atmospheric aerosols: a direct probe of aerosol viscosity. Faraday Discussions, 2013, 165, 343.	3.2	69
14	Optical trapping and Raman spectroscopy of solid particles. Physical Chemistry Chemical Physics, 2014, 16, 11426-11434.	2.8	68
15	Understanding the environmental impacts of large fissure eruptions: Aerosol and gas emissions from the 2014–2015 Holuhraun eruption (Iceland). Earth and Planetary Science Letters, 2017, 472, 309-322.	4.4	59
16	Air quality during and after festivals: Aerosol concentrations, composition and health effects. Atmospheric Research, 2019, 227, 220-232.	4.1	57
17	Effect of aerosol composition on the performance of low-cost optical particle counter correction factors. Atmospheric Measurement Techniques, 2020, 13, 1181-1193.	3.1	56
18	Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors. Atmospheric Chemistry and Physics, 2018, 18, 15403-15418.	4.9	55

#	Article	IF	Citations
19	Studies of Single Aerosol Particles Containing Malonic Acid, Glutaric Acid, and Their Mixtures with Sodium Chloride. II. Liquid-State Vapor Pressures of the Acids. Journal of Physical Chemistry A, 2010, 114, 10156-10165.	2.5	54
20	Uptake of Gaseous Hydrogen Peroxide by Submicrometer Titanium Dioxide Aerosol as a Function of Relative Humidity. Environmental Science & Environmenta	10.0	53
21	Molecular composition of organic aerosols at urban background and road tunnel sites using ultra-high resolution mass spectrometry. Faraday Discussions, 2016, 189, 51-68.	3.2	50
22	Characterization of Traffic-Related Particulate Matter Emissions in a Road Tunnel in Birmingham, UK: Trace Metals and Organic Molecular Markers. Aerosol and Air Quality Research, 2017, 17, 117-130.	2.1	46
23	Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. Environmental Science & Environmental Science & Environmenta	10.0	45
24	Evaluation of EDAR vehicle emissions remote sensing technology. Science of the Total Environment, 2017, 609, 1464-1474.	8.0	42
25	Real-world assessment of vehicle air pollutant emissions subset by vehicle type, fuel and EURO class: New findings from the recent UK EDAR field campaigns, and implications for emissions restricted zones. Science of the Total Environment, 2020, 734, 139416.	8.0	41
26	Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol. Atmospheric Chemistry and Physics, 2011, 11, 12181-12195.	4.9	40
27	Hygroscopic growth and cloud activation of pollen: a laboratory and modelling study. Atmospheric Science Letters, 2012, 13, 289-295.	1.9	40
28	Absorption Cross Sections of Formaldehyde at Wavelengths from 300 to 340 nm at 294 and 245 K. Journal of Physical Chemistry A, 2006, 110, 11645-11653.	2.5	38
29	Dynamic viscosity mapping of the oxidation of squalene aerosol particles. Physical Chemistry Chemical Physics, 2016, 18, 30385-30393.	2.8	37
30	Cloud condensation nucleation activities of calcium carbonate and its atmospheric ageing products. Physical Chemistry Chemical Physics, 2015, 17, 32194-32203.	2.8	36
31	Visibility as a proxy for air quality in East Africa. Environmental Research Letters, 2020, 15, 084002.	5.2	36
32	The effect of humidity on the ozonolysis of unsaturated compounds in aerosol particles. Physical Chemistry Chemical Physics, 2012, 14, 8023.	2.8	31
33	Heterogeneous reaction of N _{O₅ with airborne TiO₂ particles and its implication for stratospheric particle iniection. Atmospheric Chemistry and Physics. 2014. 14. 6035-6048.}	4.9	31
34	Comprehensive modeling study of ozonolysis of oleic acid aerosol based on realâ€time, online measurements of aerosol composition. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4364-4377.	3.3	31
35	Nitrous acid (HONO) emissions under real-world driving conditions from vehicles in a UK road tunnel. Atmospheric Chemistry and Physics, 2020, 20, 5231-5248.	4.9	31
36	Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles. Physical Chemistry Chemical Physics, 2016, 18, 21710-21719.	2.8	30

#	Article	IF	Citations
37	Analysis of new particle formation (NPF) events at nearby rural, urban background and urban roadside sites. Atmospheric Chemistry and Physics, 2019, 19, 5679-5694.	4.9	30
38	Air quality assessment in three East African cities using calibrated low-cost sensors with a focus on road-based hotspots. Environmental Research Communications, 2021, 3, 075007.	2.3	30
39	Heterogeneous Interaction of SiO ₂ with N ₂ O ₅ : Aerosol Flow Tube and Single Particle Optical Levitation–Raman Spectroscopy Studies. Journal of Physical Chemistry A, 2014, 118, 8817-8827.	2.5	28
40	A new electrodynamic balance (EDB) design for low-temperature studies: application to immersion freezing of pollen extract bioaerosols. Atmospheric Measurement Techniques, 2015, 8, 1183-1195.	3.1	28
41	Ozonolysis of Maleic Acid Aerosols: Effect upon Aerosol Hygroscopicity, Phase and Mass. Environmental Science & Environmental	10.0	27
42	The impact of air pollutants on ambulance dispatches: A systematic review and meta-analysis of acute effects. Environmental Pollution, 2019, 254, 112769.	7.5	26
43	Investigation of vehicle cold start primary NO2 emissions inferred from ambient monitoring data in the UK and their implications for urban air quality. Atmospheric Environment, 2019, 199, 402-414.	4.1	26
44	Ultraviolet Photolysis of HCHO: Absolute HCO Quantum Yields by Direct Detection of the HCO Radical Photoproduct. Journal of Physical Chemistry A, 2008, 112, 12437-12448.	2.5	25
45	High-resolution absorption cross sections of formaldehyde at wavelengths from 313 to 320 nm. Physical Chemistry Chemical Physics, 2005, 7, 79.	2.8	24
46	Photochemistry of formaldehyde under tropospheric conditions. Faraday Discussions, 2005, 130, 59.	3.2	23
47	Impact of extreme temperatures on ambulance dispatches in London, UK. Environmental Research, 2020, 182, 109100.	7.5	21
48	Investigating the Association between Wood and Charcoal Domestic Cooking, Respiratory Symptoms and Acute Respiratory Infections among Children Aged Under 5 Years in Uganda: A Cross-Sectional Analysis of the 2016 Demographic and Health Survey. International Journal of Environmental Research and Public Health, 2020, 17, 3974.	2.6	21
49	The effect of meteorological conditions and atmospheric composition in the occurrence and development of new particle formation (NPF) events in Europe. Atmospheric Chemistry and Physics, 2021, 21, 3345-3370.	4.9	21
50	On the interpretation of in situ HONO observations via photochemical steady state. Faraday Discussions, 2016, 189, 191-212.	3.2	20
51	Impact of Air Temperature on London Ambulance Call-Out Incidents and Response Times. Climate, 2017, 5, 61.	2.8	19
52	Evaluation of ultrafine particle concentrations and size distributions at London Heathrow Airport. Atmospheric Environment, 2020, 222, 117148.	4.1	19
53	Determination of the impact of rainfall on road accidents in Thailand. Heliyon, 2021, 7, e06061.	3.2	18
54	Effectiveness of interventions to reduce household air pollution from solid biomass fuels and improve maternal and child health outcomes in low- and middle-income countries: a systematic review protocol. Systematic Reviews, 2021, 10, 33.	5.3	18

#	Article	IF	Citations
55	Laboratory and modelling study of the hygroscopic properties of two model humic acid aerosol particles. Journal of Aerosol Science, 2010, 41, 457-467.	3.8	17
56	Rapid interrogation of the physical and chemical characteristics of salbutamol sulphate aerosol from a pressurised metered-dose inhaler (pMDI). Chemical Communications, 2014, 50, 15499-15502.	4.1	16
57	Heterogeneous reaction of ClONO ₂ with TiO ₂ aerosol particles: implications for stratospheric particle injection for climate engineering. Atmospheric Chemistry and Physics. 2016. 16. 15397-15412.	4.9	16
58	Measurement of the Raman spectra and hygroscopicity of four pharmaceutical aerosols as they travel from pressurised metered dose inhalers (pMDI) to a model lung. International Journal of Pharmaceutics, 2017, 520, 59-69.	5.2	16
59	Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions. Atmospheric Chemistry and Physics, 2016, 16, 15561-15579.	4.9	15
60	Remember, remember the 5th of November; gunpowder, particles and smog. Weather, 2015, 70, 320-324.	0.7	14
61	1064 nm Dispersive Raman Microspectroscopy and Optical Trapping of Pharmaceutical Aerosols. Analytical Chemistry, 2018, 90, 8838-8844.	6.5	14
62	Assessing the sources of particles at an urban background site using both regulatory instruments and low-cost sensors â€" a comparative study. Atmospheric Measurement Techniques, 2021, 14, 4139-4155.	3.1	14
63	Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?. Atmospheric Chemistry and Physics, 2021, 21, 18213-18225.	4.9	14
64	Temperature dependent structured absorption spectra of molecular chlorine. Physical Chemistry Chemical Physics, 2011, 13, 15318.	2.8	13
65	Quantification of within-vehicle exposure to NOx and particles: Variation with outside air quality, route choice and ventilation options. Atmospheric Environment, 2020, 240, 117810.	4.1	13
66	A phenomenology of new particle formation (NPF) at 13 European sites. Atmospheric Chemistry and Physics, 2021, 21, 11905-11925.	4.9	13
67	Effectiveness of interventions to reduce household air pollution from solid biomass fuels and improve maternal and child health outcomes in low―and middleâ€income countries: A systematic review and metaâ€analysis. Indoor Air, 2022, 32, .	4.3	12
68	A study on the performance of low-cost sensors for source apportionment at an urban background site. Atmospheric Measurement Techniques, 2022, 15, 4047-4061.	3.1	12
69	Kinetics, Mechanism, and Thermochemistry of the Gas Phase Reaction of Atomic Chlorine with Dimethyl Sulfoxideâ€. Journal of Physical Chemistry A, 2006, 110, 6874-6885.	2.5	11
70	Real-World Contribution of Electrification and Replacement Scenarios to the Fleet Emissions in West Midland Boroughs, UK. Atmosphere, 2021, 12, 332.	2.3	11
71	Impacts of emergency health protection measures upon air quality, traffic and public health: evidence from Oxford, UK. Environmental Pollution, 2022, 293, 118584.	7. 5	11
72	Measurement of the fluorescence lifetime of GFP in high refractive index levitated droplets using FLIM. Physical Chemistry Chemical Physics, 2020, 22, 14704-14711.	2.8	10

#	Article	IF	Citations
73	The contribution of cooking appliances and residential traffic proximity to aerosol personal exposure. Journal of Environmental Health Science & Engineering, 2021, 19, 307-318.	3.0	10
74	Evaluation of aircraft emissions at London Heathrow Airport. Atmospheric Environment, 2021, 254, 118226.	4.1	10
75	The Diamond League athletic series: does the air quality sparkle?. International Journal of Biometeorology, 2021, 65, 1427-1442.	3.0	9
76	Comparison of Respiratory Health Impacts Associated with Wood and Charcoal Biomass Fuels: A Population-Based Analysis of 475,000 Children from 30 Low- and Middle-Income Countries. International Journal of Environmental Research and Public Health, 2021, 18, 9305.	2.6	9
77	Biomass cooking carbon monoxide levels in commercial canteens in Kigali, Rwanda. Archives of Environmental and Occupational Health, 2021, 76, 75-85.	1.4	8
78	Investigating Cooking Activity Patterns and Perceptions of Air Quality Interventions among Women in Urban Rwanda. International Journal of Environmental Research and Public Health, 2021, 18, 5984.	2.6	8
79	The UV and visible spectra of chlorine peroxide: Constraining the atmospheric photolysis rate. Geophysical Research Letters, 2014, 41, 1781-1788.	4.0	7
80	Indoor PM _{2.5} characteristics and CO concentration in households using biomass fuel in Kigali, Rwanda. International Journal of Environmental Studies, 2020, 77, 998-1011.	1.6	7
81	Corrigendum to "Heterogeneous reaction of N ₂ O ₅ with airborne TiO ₂ particles and its implication for stratospheric particle injection" published in Atmos. Chem. Phys., 14, 6035–6048, 2014. Atmospheric Chemistry and	4.9	6
82	Women's Perceptions and Attitudes to Household Air Pollution Exposure and Capability to Change Cooking Behaviours in Urban Rwanda. Sustainability, 2022, 14, 1608.	3.2	6
83	A temperature-dependent kinetics study of the reaction of O(3PJ) with (CH3)2SO. International Journal of Chemical Kinetics, 2002, 34, 156-161.	1.6	5
84	Trends in Local Air Quality 1970–2014. Issues in Environmental Science and Technology, 2015, , 58-106.	0.4	5
85	â€~Can't see the forest for the trees': The importance of fungi in the context of UK tree planting. Food and Energy Security, 0, , .	4.3	5
86	Field Calibration and Evaluation of an Internet-of-Things-Based Particulate Matter Sensor. Frontiers in Environmental Science, 2022, 9, .	3.3	5
87	Cooking outdoors or with cleaner fuels does not increase malarial risk in children under 5Âyears: a cross-sectional study of 17 sub-Saharan African countries. Malaria Journal, 2022, 21, 133.	2.3	4
88	Amateur runners more influenced than elite runners by temperature and air pollution during the UK's Great North Run half marathon. Science of the Total Environment, 2022, 842, 156825.	8.0	4
89	Mie scattering from optically levitated mixed sulfuric acid–silica core–shell aerosols: observation of core–shell morphology for atmospheric science. Physical Chemistry Chemical Physics, 2022, 24, 5813-5822.	2.8	3
90	Association of household cooking location behaviour with acute respiratory infections among children aged under five years; a cross sectional analysis of 30 Sub-Saharan African Demographic and Health Surveys. Atmospheric Environment, 2022, 276, 119055.	4.1	3

#	Article	IF	CITATIONS
91	Differentiating Semi-Volatile and Solid Particle Events Using Low-Cost Lung-Deposited Surface Area and Black Carbon Sensors. Atmosphere, 2022, 13, 747.	2.3	3
92	Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels. Biogeosciences, 2022, 19, 2653-2669.	3.3	3
93	Machine learning techniques to improve the field performance of low-cost air quality sensors. Atmospheric Measurement Techniques, 2022, 15, 3261-3278.	3.1	3
94	WORKSHOP ON THE SOURCES, QUANTIFICATION AND HEALTH IMPLICATIONS OF BIOAEROSOLS WORKSHOP REPORT. American Journal of Pharmacology and Toxicology, 2014, 9, 189-199.	0.7	2
95	Chemical complexity of the urban atmosphere and its consequences: general discussion. Faraday Discussions, 2016, 189, 137-167.	3.2	1
96	Urban case studies: general discussion. Faraday Discussions, 2016, 189, 473-514.	3.2	1
97	Differential health responses to climate change projections in three UK cities as measured by ambulance dispatch data. Environmental Advances, 2022, 7, 100146.	4.8	1
98	Assessing the effectiveness of low-cost air quality monitors for identifying volcanic SO2 and PM downwind from Masaya volcano, Nicaragua. Volcanica, 2022, 5, 33-59.	1.8	1
99	Timescales of mixing and of chemistry: general discussion. Faraday Discussions, 2016, 189, 253-276.	3.2	0
100	Insights into HONO sources from observations during a solar eclipse. Environmental Science Atmospheres, 2021, 1, 395-405.	2.4	0
101	Replacing wood with charcoal fuel prevents 1.7 million acute respiratory infections worldwide; evidence from 360,000 children in 30 low-and-middle-income countries. ISEE Conference Abstracts, 2021, 2021, .	0.0	O
102	Use of biomass cooking fuel and risk of respiratory symptoms and Acute Respiratory Infections in Ugandan children aged under 5 years: cross-sectional analysis., 2020,,.		0
103	Assessing the effectiveness of low-cost air quality monitors for identifying volcanic SO2 and PM downwind from Masaya volcano, Nicaragua. Volcanica, 2022, 5, 13-39.	1.8	О