Volker Mailänder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/757842/publications.pdf

Version: 2024-02-01

207 papers

13,315 citations

19657 61 h-index 24982 109 g-index

216 all docs

216 docs citations

216 times ranked 17588 citing authors

#	Article	IF	Citations
1	Modulating Protein Corona and Materials–Cell Interactions with Temperatureâ€Responsive Materials. Advanced Functional Materials, 2022, 32, .	14.9	18
2	Temperatureâ€Responsive Nanoparticles Enable Specific Binding of Apolipoproteins from Human Plasma. Small, 2022, 18, e2103138.	10.0	8
3	Antibody-Functionalized Carnauba Wax Nanoparticles to Target Breast Cancer Cells. ACS Applied Bio Materials, 2022, 5, 622-629.	4.6	10
4	Achieving dendritic cell subset-specific targeting in vivo by site-directed conjugation of targeting antibodies to nanocarriers. Nano Today, 2022, 43, 101375.	11.9	9
5	Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream. Biomacromolecules, 2022, 23, 1065-1074.	5 . 4	15
6	Nanoparticles Surface Chemistry Influence on Protein Corona Composition and Inflammatory Responses. Nanomaterials, 2022, 12, 682.	4.1	25
7	Structure-Based Design of High-Affinity and Selective Peptidomimetic Hepsin Inhibitors. Biomacromolecules, 2022, 23, 2236-2242.	5.4	3
8	Multicomponent encapsulation into fully degradable protein nanocarriers ⟨i⟩via⟨ i⟩ interfacial azide–alkyne click reaction in miniemulsion allows the co-delivery of immunotherapeutics. Nanoscale Horizons, 2022, 7, 908-915.	8.0	5
9	Temperature, concentration, and surface modification influence the cellular uptake and the protein corona of polystyrene nanoparticles. Acta Biomaterialia, 2022, 148, 271-278.	8.3	13
10	Peptidomimetic inhibitors of TMPRSS2 block SARS-CoV-2 infection in cell culture. Communications Biology, 2022, 5, .	4.4	6
11	Proteomics reveals differential adsorption of angiogenic platelet lysate proteins on calcium phosphate bone substitute materials. International Journal of Energy Production and Management, 2022, 9, .	3.7	3
12	Heparin modulates the cellular uptake of nanomedicines. Biomaterials Science, 2021, 9, 1227-1231.	5.4	3
13	The conjugation strategy affects antibody orientation and targeting properties of nanocarriers. Nanoscale, 2021, 13, 9816-9824.	5.6	12
14	Brush Conformation of Polyethylene Glycol Determines the Stealth Effect of Nanocarriers in the Low Protein Adsorption Regime. Nano Letters, 2021, 21, 1591-1598.	9.1	87
15	Contactless Nanoparticle-Based Guiding of Cells by Controllable Magnetic Fields. Nanotechnology, Science and Applications, 2021, Volume 14, 91-100.	4.6	14
16	Monitoring Reversible Tight Junction Modulation with a Currentâ€Driven Organic Electrochemical Transistor. Advanced Materials Technologies, 2021, 6, 2000940.	5.8	17
17	Mechanistic investigation of thermosensitive liposome immunogenicity and understanding the drivers for circulation half-life: A polyethylene glycol versus 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol study. Journal of Controlled Release, 2021, 333, 1-15.	9.9	12
18	Nanomedicine at the crossroads – A quick guide for IVIVC. Advanced Drug Delivery Reviews, 2021, 179, 113829.	13.7	29

#	Article	IF	CITATIONS
19	Density of Conjugated Antibody Determines the Extent of Fc Receptor Dependent Capture of Nanoparticles by Liver Sinusoidal Endothelial Cells. ACS Nano, 2021, 15, 15191-15209.	14.6	32
20	Unraveling the In Vivo Protein Corona. Cells, 2021, 10, 132.	4.1	29
21	Novel Biodegradable Composite of Calcium Phosphate Cement and the Collagen I Mimetic P-15 for Pedicle Screw Augmentation in Osteoporotic Bone. Biomedicines, 2021, 9, 1392.	3.2	4
22	Ultra-small gold nanoclusters assembled on plasma polymer-modified zeolites: a multifunctional nanohybrid with anti-haemorrhagic and anti-inflammatory properties. Nanoscale, 2021, 13, 19936-19945.	5.6	7
23	A bio-orthogonal functionalization strategy for site-specific coupling of antibodies on vesicle surfaces after self-assembly. Polymer Chemistry, 2020, 11, 527-540.	3.9	31
24	Water-dispersed semiconductor nanoplatelets with high fluorescence brightness, chemical and colloidal stability. Journal of Materials Chemistry B, 2020, 8, 146-154.	5.8	17
25	Controlling protein interactions in blood for effective liver immunosuppressive therapy by silica nanocapsules. Nanoscale, 2020, 12, 2626-2637.	5.6	26
26	Nanovaccine impact on dendritic cells: transcriptome analysis enables new insights into antigen and adjuvant effects. Nanomedicine, 2020, 15, 2053-2069.	3.3	5
27	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie - International Edition, 2020, 59, 20008-20016.	13.8	48
28	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie, 2020, 132, 20183-20191.	2.0	4
29	Preparation of the protein corona: How washing shapes the proteome and influences cellular uptake of nanocarriers. Acta Biomaterialia, 2020, 114, 333-342.	8.3	11
30	Bio-orthogonal triazolinedione (TAD) crosslinked protein nanocapsules affect protein adsorption and cell interaction. Polymer Chemistry, 2020, 11, 3821-3830.	3.9	9
31	Silica Nanocapsules with Different Sizes and Physicochemical Properties as Suitable Nanocarriers for Uptake in T-Cells /p>. International Journal of Nanomedicine, 2020, Volume 15, 6069-6084.	6.7	14
32	Cellular Uptake of siRNA-Loaded Nanocarriers to Knockdown PD-L1: Strategies to Improve T-cell Functions. Cells, 2020, 9, 2043.	4.1	7
33	Multivalency Beats Complexity: A Study on the Cell Uptake of Carbohydrate Functionalized Nanocarriers to Dendritic Cells. Cells, 2020, 9, 2087.	4.1	0
34	Polyphosphoester surfactants as general stealth coatings for polymeric nanocarriers. Acta Biomaterialia, 2020, 116, 318-328.	8.3	19
35	The Influence of Nanoparticle Shape on Protein Corona Formation. Small, 2020, 16, e2000285.	10.0	108
36	Polysaccharide-Based pH-Responsive Nanocapsules Prepared with Bio-Orthogonal Chemistry and Their Use as Responsive Delivery Systems. Biomacromolecules, 2020, 21, 2764-2771.	5.4	17

#	Article	IF	CITATIONS
37	Versatile Preparation of Silica Nanocapsules for Biomedical Applications. Particle and Particle Systems Characterization, 2020, 37, 1900484.	2.3	22
38	From In Silico to Experimental Validation: Tailoring Peptide Substrates for a Serine Protease. Biomacromolecules, 2020, 21, 1636-1643.	5. 4	3
39	Amphiphilic dendrimers control protein binding and corona formation on liposome nanocarriers. Chemical Communications, 2020, 56, 8663-8666.	4.1	13
40	Nanoparticle Shape: The Influence of Nanoparticle Shape on Protein Corona Formation (Small) Tj ETQq0 0 0 rgB	T /Qyerloc	k 10 Tf 50 62
41	Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirusâ€5. Angewandte Chemie, 2020, 132, 5761-5769.	2.0	2
42	Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirusâ€5. Angewandte Chemie - International Edition, 2020, 59, 5712-5720.	13.8	20
43	Elastic Superhydrophobic and Photocatalytic Active Films Used as Blood Repellent Dressing. Advanced Materials, 2020, 32, e1908008.	21.0	129
44	Temperature Sensing in Cells Using Polymeric Upconversion Nanocapsules. Biomacromolecules, 2020, 21, 4469-4478.	5 . 4	29
45	Monitoring of Cell Layer Integrity with a Currentâ€Driven Organic Electrochemical Transistor. Advanced Healthcare Materials, 2019, 8, e1900128.	7.6	20
46	Biomaterial Surface Hydrophobicity-Mediated Serum Protein Adsorption and Immune Responses. ACS Applied Materials & Distribution (2019), 11, 27615-27623.	8.0	122
47	Functionalization of Liposomes with Hydrophilic Polymers Results in Macrophage Uptake Independent of the Protein Corona. Biomacromolecules, 2019, 20, 2989-2999.	5.4	56
48	Covalently Binding of Bovine Serum Albumin to Unsaturated Poly(Globalideâ€Coâ€Îµâ€Caprolactone) Nanoparticles by Thiolâ€Ene Reactions. Macromolecular Bioscience, 2019, 19, e1900145.	4.1	19
49	Noncovalent Targeting of Nanocarriers to Immune Cells with Polyphosphoesterâ€Based Surfactants in Human Blood Plasma. Advanced Science, 2019, 6, 1901199.	11.2	11
50	Timing of Heparin Addition to the Biomolecular Corona Influences the Cellular Uptake of Nanocarriers. Biomacromolecules, 2019, 20, 3724-3732.	5 . 4	4
51	Overcoming the barrier of CD8+ T cells: Two types of nano-sized carriers for siRNA transport. Acta Biomaterialia, 2019, 100, 338-351.	8.3	10
52	Protein Corona: Prevention of Dominant IgG Adsorption on Nanocarriers in IgGâ€Enriched Blood Plasma by Clusterin Precoating (Adv. Sci. 10/2019). Advanced Science, 2019, 6, 1970062.	11.2	2
53	Protein deglycosylation can drastically affect the cellular uptake. Nanoscale, 2019, 11, 10727-10737.	5.6	17
54	Nanocarriers and Immune Cells. Nanoscience and Technology, 2019, , 255-279.	1.5	1

#	Article	IF	CITATIONS
55	Prevention of Dominant IgG Adsorption on Nanocarriers in IgGâ€Enriched Blood Plasma by Clusterin Precoating. Advanced Science, 2019, 6, 1802199.	11.2	31
56	Phosphonylation Controls the Protein Corona of Multifunctional Polyglycerolâ€Modified Nanocarriers. Macromolecular Bioscience, 2019, 19, 1800468.	4.1	5
57	How to Coat the Inside of Narrow and Long Tubes with a Superâ€Liquidâ€Repellent Layer—A Promising Candidate for Antibacterial Catheters. Advanced Materials, 2019, 31, e1801324.	21.0	65
58	Hydrophilicity Regulates the Stealth Properties of Polyphosphoesterâ€Coated Nanocarriers. Angewandte Chemie - International Edition, 2018, 57, 5548-5553.	13.8	88
59	Hydrophilie als bestimmender Faktor des Stealthâ€Effekts von Polyphosphoesterâ€funktionalisierten NanotrÅ g ern. Angewandte Chemie, 2018, 130, 5647-5653.	2.0	9
60	Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions. Angewandte Chemie - International Edition, 2018, 57, 12626-12648.	13.8	40
61	Denaturation via Surfactants Changes Composition of Protein Corona. Biomacromolecules, 2018, 19, 2657-2664.	5.4	18
62	Engineering von Proteinen an OberflÄ z hen: Von komplementÄ r er Charakterisierung zu MaterialoberflÄ z hen mit maÄŸgeschneiderten Funktionen. Angewandte Chemie, 2018, 130, 12806-12830.	2.0	3
63	Highly Loaded Semipermeable Nanocapsules for Magnetic Resonance Imaging. Macromolecular Bioscience, 2018, 18, e1700387.	4.1	13
64	Enhanced photoluminescence properties of a carbon dot system through surface interaction with polymeric nanoparticles. Journal of Colloid and Interface Science, 2018, 518, 11-20.	9.4	18
65	The Transferability from Animal Models to Humans: Challenges Regarding Aggregation and Protein Corona Formation of Nanoparticles. Biomacromolecules, 2018, 19, 374-385.	5.4	70
66	Protein machineries defining pathways of nanocarrier exocytosis and transcytosis. Acta Biomaterialia, 2018, 71, 432-443.	8.3	44
67	Beyond the protein corona – lipids matter for biological response of nanocarriers. Acta Biomaterialia, 2018, 71, 420-431.	8.3	61
68	Protein denaturation caused by heat inactivation detrimentally affects biomolecular corona formation and cellular uptake. Nanoscale, 2018, 10, 21096-21105.	5.6	42
69	The challenges of oral drug delivery via nanocarriers. Drug Delivery, 2018, 25, 1694-1705.	5.7	151
70	Protein Corona Mediated Stealth Properties of Biocompatible Carbohydrateâ€based Nanocarriers. Israel Journal of Chemistry, 2018, 58, 1363-1372.	2.3	15
71	Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nature Communications, 2018, 9, 5306.	12.8	55
72	Delivering all in one: Antigen-nanocapsule loaded with dual adjuvant yields superadditive effects by DC-directed T cell stimulation. Journal of Controlled Release, 2018, 289, 23-34.	9.9	33

#	Article	IF	Citations
73	Exploiting the biomolecular corona: pre-coating of nanoparticles enables controlled cellular interactions. Nanoscale, 2018, 10, 10731-10739.	5.6	101
74	How Low Can You Go? Low Densities of Poly(ethylene glycol) Surfactants Attract Stealth Proteins. Macromolecular Bioscience, 2018, 18, e1800075.	4.1	8
75	Proteinâ€Coronaâ€byâ€Design in 2D: A Reliable Platform to Decode Bio–Nano Interactions for the Nextâ€Generation Qualityâ€byâ€Design Nanomedicines. Advanced Materials, 2018, 30, e1802732.	21.0	21
76	Redâ€Lightâ€Controlled Release of Drug–Ru Complex Conjugates from Metallopolymer Micelles for Phototherapy in Hypoxic Tumor Environments. Advanced Functional Materials, 2018, 28, 1804227.	14.9	82
77	The Protein Corona as a Confounding Variable of Nanoparticle-Mediated Targeted Vaccine Delivery. Frontiers in Immunology, 2018, 9, 1760.	4.8	63
78	The Role of the Protein Corona in the Uptake Process of Nanoparticles. Microscopy and Microanalysis, 2018, 24, 1404-1405.	0.4	1
79	Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. Acta Biomaterialia, 2018, 76, 217-224.	8.3	65
80	Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nature Nanotechnology, 2018, 13, 862-869.	31.5	210
81	Protein corona composition of poly(ethylene glycol)- and poly(phosphoester)-coated nanoparticles correlates strongly with the amino acid composition of the protein surface. Nanoscale, 2017, 9, 2138-2144.	5.6	76
82	Fully degradable protein nanocarriers by orthogonal photoclick tetrazole–ene chemistry for the encapsulation and release. Nanoscale Horizons, 2017, 2, 297-302.	8.0	15
83	Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?. Chemistry - A European Journal, 2017, 23, 10832-10837.	3.3	63
84	Visualization of the protein corona: towards a biomolecular understanding of nanoparticle-cell-interactions. Nanoscale, 2017, 9, 8858-8870.	5.6	203
85	Sequence-Controlled Delivery of Peptides from Hierarchically Structured Nanomaterials. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3885-3894.	8.0	19
86	Upconversion Nanocarriers Encapsulated with Photoactivatable Ru Complexes for Nearâ€Infrared Lightâ€Regulated Enzyme Activity. Small, 2017, 13, 1700997.	10.0	40
87	Visualizing the Protein Corona: A Qualitative and Quantitative Approach towards the Nano-bio-interface. Microscopy and Microanalysis, 2017, 23, 1188-1189.	0.4	1
88	Validation of weak biological effects by round robin experiments: cytotoxicity/biocompatibility of SiO2 and polymer nanoparticles in HepG2 cells. Scientific Reports, 2017, 7, 4341.	3.3	18
89	Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials, 2017, 115, 1-8.	11.4	94
90	On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles. Beilstein Journal of Nanotechnology, 2016, 7, 1296-1311.	2.8	25

#	Article	IF	CITATIONS
91	Controlling the Stealth Effect of Nanocarriers through Understanding the Protein Corona. Angewandte Chemie - International Edition, 2016, 55, 8806-8815.	13.8	215
92	Die Steuerung des Stealthâ€Effekts von NanotrÄ g ern durch das VerstÄ ¤ dnis der Proteinkorona. Angewandte Chemie, 2016, 128, 8950-8959.	2.0	11
93	Extracellular electrical recording of pH-triggered bursts in C6 glioma cell populations. Science Advances, 2016, 2, e1600516.	10.3	22
94	Polymeric hepatitis C virus non-structural protein 5A nanocapsules induce intrahepatic antigen-specific immune responses. Biomaterials, 2016, 108, 1-12.	11.4	18
95	Pre-coating with protein fractions inhibits nano-carrier aggregation in human blood plasma. RSC Advances, 2016, 6, 96495-96509.	3 . 6	33
96	Interleukin-2 Functionalized Nanocapsules for T Cell-Based Immunotherapy. ACS Nano, 2016, 10, 9216-9226.	14.6	45
97	Endocytosis and intracellular processing of nanoparticles in dendritic cells: routes to effective immunonanomedicines. Nanomedicine, 2016, 11, 2625-2630.	3.3	18
98	Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations. Scientific Reports, 2016, 6, 34843.	3.3	66
99	Rutheniumâ€Containing Block Copolymer Assemblies:ÂRedâ€Lightâ€Responsive Metallopolymers with Tunable Nanostructures for Enhanced Cellular Uptake and Anticancer Phototherapy. Advanced Healthcare Materials, 2016, 5, 467-473.	7.6	87
100	Glutathione Responsive Hyaluronic Acid Nanocapsules Obtained by Bioorthogonal Interfacial "Click― Reaction. Biomacromolecules, 2016, 17, 148-153.	5.4	13
101	Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nature Nanotechnology, 2016, 11, 372-377.	31.5	969
102	Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials, 2016, 85, 78-87.	11.4	141
103	HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules. Acta Biomaterialia, 2016, 35, 12-22.	8.3	7
104	Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake. Nanoscale, 2016, 8, 5526-5536.	5.6	120
105	Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation. Beilstein Journal of Nanotechnology, 2015, 6, 383-395.	2.8	19
106	Heparinâ€Based Nanocapsules as Potential Drug Delivery Systems. Macromolecular Bioscience, 2015, 15, 765-776.	4.1	12
107	Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition. Nanoscale, 2015, 7, 2992-3001.	5. 6	193
108	Tailoring the stealth properties of biocompatible polysaccharide nanocontainers. Biomaterials, 2015, 49, 125-134.	11.4	53

#	Article	IF	CITATIONS
109	Nanocarrier for Oral Peptide Delivery Produced by Polyelectrolyte Complexation in Nanoconfinement. Biomacromolecules, 2015, 16, 2282-2287.	5.4	28
110	Nanoprobing the acidification process during intracellular uptake and trafficking. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1585-1596.	3 . 3	11
111	Genotoxic effects of zinc oxide nanoparticles. Nanoscale, 2015, 7, 8931-8938.	5. 6	89
112	Low frequency electric current noise in glioma cell populations. Journal of Materials Chemistry B, 2015, 3, 5035-5039.	5 . 8	14
113	Nanoparticles and antigen-specific T-cell therapeutics: a comprehensive study on uptake and release. Nanomedicine, 2015, 10, 1063-1076.	3.3	18
114	Carbohydrateâ€Based Nanocarriers Exhibiting Specific Cell Targeting with Minimum Influence from the Protein Corona. Angewandte Chemie - International Edition, 2015, 54, 7436-7440.	13.8	137
115	Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular Uptake. Biomacromolecules, 2015, 16, 1311-1321.	5.4	497
116	Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chemical Communications, 2015, 51, 431-434.	4.1	168
117	Abstract 3872: Genotoxicity of zinc oxid nanoparticles and the activation of ATM-Chk2 DNA-damage-response pathway are caused by zinc-ions. , 2015, , .		1
118	Pharmacokinetics on a microscale: visualizing Cy5-labeled oligonucleotide release from poly(n-butylcyanoacrylate) nanocapsules in cells. International Journal of Nanomedicine, 2014, 9, 5471.	6.7	18
119	Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects. Beilstein Journal of Nanotechnology, 2014, 5, 2388-2397.	2.8	65
120	The Marine Sponge-Derived Inorganic Polymers, Biosilica and Polyphosphate, as Morphogenetically Active Matrices/Scaffolds for the Differentiation of Human Multipotent Stromal Cells: Potential Application in 3D Printing and Distraction Osteogenesis. Marine Drugs, 2014, 12, 1131-1147.	4.6	54
121	Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions. Beilstein Journal of Nanotechnology, 2014, 5, 2403-2412.	2.8	165
122	Imaging the intracellular degradation of biodegradable polymer nanoparticles. Beilstein Journal of Nanotechnology, 2014, 5, 1905-1917.	2.8	22
123	Stabilization of Nanoparticles Synthesized by Miniemulsion Polymerization Using "Green―Aminoâ€Acid Based Surfactants. Macromolecular Symposia, 2014, 337, 9-17.	0.7	7
124	Paclitaxel-loaded polyphosphate nanoparticles: a potential strategy for bone cancer treatment. Journal of Materials Chemistry B, 2014, 2, 1298.	5 . 8	48
125	Drug delivery without nanoparticle uptake: delivery by a kiss-and-run mechanism on the cell membrane. Chemical Communications, 2014, 50, 1369-1371.	4.1	40
126	Size-Dependent Knockdown Potential of siRNA-Loaded Cationic Nanohydrogel Particles. Biomacromolecules, 2014, 15, 4111-4121.	5 . 4	59

#	Article	IF	Citations
127	Advanced dextran based nanogels for fightingStaphylococcus aureusinfections by sustained zinc release. Journal of Materials Chemistry B, 2014, 2, 2175-2183.	5.8	35
128	Mass Spectrometry and Imaging Analysis of Nanoparticle-Containing Vesicles Provide a Mechanistic Insight into Cellular Trafficking. ACS Nano, 2014, 8, 10077-10088.	14.6	84
129	Bioactive and biodegradable silica biomaterial for bone regeneration. Bone, 2014, 67, 292-304.	2.9	108
130	Tailor-Made Nanocontainers for Combined Magnetic-Field-Induced Release and MRI. Macromolecular Bioscience, 2014, 14, 1205-1214.	4.1	12
131	Amino-functionalized nanoparticles as inhibitors of mTOR and inducers of cell cycle arrest in leukemia cells. Biomaterials, 2014, 35, 1944-1953.	11.4	74
132	Interaction of <i>N</i> -(2-Hydroxypropyl)Methacrylamide Based Homo, Random and Block Copolymers with Primary Immune Cells. Journal of Biomedical Nanotechnology, 2014, 10, 81-91.	1.1	6
133	Polymeric nanoparticles of different sizes overcome the cell membrane barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 265-274.	4.3	59
134	(Oligo)mannose functionalized hydroxyethyl starch nanocapsules: en route to drug delivery systems with targeting properties. Journal of Materials Chemistry B, 2013, 1, 4338.	5.8	44
135	The chemotherapeutic agent topotecan differentially modulates the phenotype and function of dendritic cells. Cancer Immunology, Immunotherapy, 2013, 62, 1315-1326.	4.2	21
136	Absolute Quantitation of Subâ€ <scp>M</scp> icrometer Particles in Cells by Flow Cytometry. Macromolecular Bioscience, 2013, 13, 1568-1575.	4.1	3
137	Zinc release from atomic layer deposited zinc oxide thin films and its antibacterial effect on Escherichia coli. Applied Surface Science, 2013, 287, 375-380.	6.1	33
138	Bioinspired phosphorylcholine containing polymer films with silver nanoparticles combining antifouling and antibacterial properties. Biomaterials Science, 2013, 1, 470.	5.4	41
139	Triplet– <scp>T</scp> riplet Annihilation Upconversion Based Nanocapsules for Bioimaging Under Excitation by Red and Deepâ€ <scp>R</scp> ed Light. Macromolecular Bioscience, 2013, 13, 1422-1430.	4.1	83
140	Super liquid-repellent gas membranes for carbon dioxide capture and heart–lung machines. Nature Communications, 2013, 4, 2512.	12.8	98
141	Ferrocenyl Glycidyl Ether: A Versatile Ferrocene Monomer for Copolymerization with Ethylene Oxide to Water-Soluble, Thermoresponsive Copolymers. Macromolecules, 2013, 46, 647-655.	4.8	71
142	Nanocapsules with specific targeting and release properties using miniemulsion polymerization . Expert Opinion on Drug Delivery, 2013, 10, 593-609.	5.0	59
143	Enzyme cleavable nanoparticles from peptide based triblock copolymers. Nanoscale, 2013, 5, 4829.	5.6	14
144	Complex encounters: nanoparticles in whole blood and their uptake into different types of white blood cells. Nanomedicine, 2013, 8, 699-713.	3.3	27

#	Article	IF	Citations
145	Pharmacology of nanocarriers on the microscale: importance of uptake mechanisms and intracellular trafficking for efficient drug delivery. Nanomedicine, 2013, 8, 321-323.	3.3	8
146	Enzyme Responsive Hyaluronic Acid Nanocapsules Containing Polyhexanide and Their Exposure to Bacteria To Prevent Infection. Biomacromolecules, 2013, 14, 1103-1112.	5.4	122
147	HPMA Copolymers as Surfactants in the Preparation of Biocompatible Nanoparticles for Biomedical Application. Biomacromolecules, 2012, 13, 4179-4187.	5.4	30
148	Functionalized Polystyrene Nanoparticles Trigger Human Dendritic Cell Maturation Resulting in Enhanced CD4 ⁺ T Cell Activation. Macromolecular Bioscience, 2012, 12, 1637-1647.	4.1	26
149	Surface Roughness and Charge Influence the Uptake of Nanoparticles: Fluorescently Labeled Pickeringâ€Type Versus Surfactantâ€Stabilized Nanoparticles. Macromolecular Bioscience, 2012, 12, 1459-1471.	4.1	41
150	Performing Encapsulation of dsDNA and a Polymerase Chain Reaction (PCR) inside Nanocontainers Using the Inverse Miniemulsion Process. International Journal of Artificial Organs, 2012, 35, 77-83.	1.4	9
151	Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy, 2012, 14, 540-554.	0.7	246
152	Suppressing Unspecific Cell Uptake for Targeted Delivery Using Hydroxyethyl Starch Nanocapsules. Biomacromolecules, 2012, 13, 2704-2715.	5.4	89
153	How Shape Influences Uptake: Interactions of Anisotropic Polymer Nanoparticles and Human Mesenchymal Stem Cells. Small, 2012, 8, 2222-2230.	10.0	180
154	Competitive Cellular Uptake of Nanoparticles Made From Polystyrene, Poly(methyl methacrylate), and Polylactide. Macromolecular Bioscience, 2012, 12, 454-464.	4.1	16
155	Design, Synthesis, and Miniemulsion Polymerization of New Phosphonate Surfmers and Application Studies of the Resulting Nanoparticles as Model Systems for Biomimetic Mineralization and Cellular Uptake. Chemistry - A European Journal, 2012, 18, 5201-5212.	3.3	41
156	Synthesis of Polyester Nanoparticles in Miniemulsion Obtained by Radical Ringâ€Opening of BMDO and Their Potential as Biodegradable Drug Carriers. Macromolecular Bioscience, 2012, 12, 165-175.	4.1	26
157	Live Monitoring of Cargo Release From Peptideâ€Based Hybrid Nanocapsules Induced by Enzyme Cleavage. Macromolecular Rapid Communications, 2012, 33, 248-253.	3.9	35
158	Phototriggerable 2′,7-Caged Paclitaxel. PLoS ONE, 2012, 7, e43657.	2.5	13
159	Differential uptake of functionalized polystyrene nanoparticles by human macrophages and monocytic cells. FASEB Journal, 2012, 26, 580.9.	0.5	0
160	Highly Site Specific, Protease Cleavable, Hydrophobic Peptide–Polymer Nanoparticles. Macromolecules, 2011, 44, 6258-6267.	4.8	19
161	Labeling of mesenchymal stromal cells with iron oxide–poly(l-lactide) nanoparticles for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties. Cytotherapy, 2011, 13, 962-975.	0.7	30
162	Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line. ACS Nano, 2011, 5, 1657-1669.	14.6	516

#	Article	IF	Citations
163	Staining of Mitochondria with Cy5-Labeled Oligonucleotides for Long-Term Microscopy Studies. Microscopy and Microanalysis, 2011, 17, 440-445.	0.4	17
164	Amino-Functionalized Polystyrene Nanoparticles Activate the NLRP3 Inflammasome in Human Macrophages. ACS Nano, 2011, 5, 9648-9657.	14.6	211
165	Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells. Nanoscale, 2011, 3, 2028.	5.6	96
166	Criteria impacting the cellular uptake of nanoparticles: A study emphasizing polymer type and surfactant effects. Acta Biomaterialia, 2011, 7, 4160-4168.	8.3	64
167	BSA Adsorption on Differently Charged Polystyrene Nanoparticles using Isothermal Titration Calorimetry and the Influence on Cellular Uptake. Macromolecular Bioscience, 2011, 11, 628-638.	4.1	135
168	Annihilation Upconversion in Cells by Embedding the Dye System in Polymeric Nanocapsules. Macromolecular Bioscience, 2011, 11, 772-778.	4.1	98
169	DNA Amplification via Polymerase Chain Reaction Inside Miniemulsion Droplets with Subsequent Poly(<i>>n</i> i>a∈butylcyanoacrylate) Shell Formation and Delivery of Polymeric Capsules into Mammalian Cells. Macromolecular Bioscience, 2011, 11, 1099-1109.	4.1	21
170	Direct and indirect effects of functionalised fluorescence-labelled nanoparticles on human osteoclast formation and activity. Biomaterials, 2011, 32, 1706-1714.	11.4	17
171	Effect of functionalised fluorescence-labelled nanoparticles on mesenchymal stem cell differentiation. Biomaterials, 2010, 31, 2064-2071.	11.4	51
172	The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials, 2010, 31, 5063-5071.	11.4	140
173	Results of Intracoronary Stem Cell Therapy After Acute Myocardial Infarction. American Journal of Cardiology, 2010, 105, 804-812.	1.6	102
174	Characterization of MRI contrast agentâ€loaded polymeric nanocapsules as versatile vehicle for targeted imaging. Contrast Media and Molecular Imaging, 2010, 5, 59-69.	0.8	16
175	The Softer and More Hydrophobic the Better: Influence of the Side Chain of Polymethacrylate Nanoparticles for Cellular Uptake. Macromolecular Bioscience, 2010, 10, 1034-1042.	4.1	60
176	Preservation of dendritic cell function upon labeling with amino functionalized polymeric nanoparticles. Biomaterials, 2010, 31, 7086-7095.	11.4	17
177	Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials, 2010, 31, 9015-9022.	11.4	173
178	From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. Journal of Polymer Science Part A, 2010, 48, 493-515.	2.3	155
179	Specific Effects of Surface Amines on Polystyrene Nanoparticles in their Interactions with Mesenchymal Stem Cells. Biomacromolecules, 2010, 11, 748-753.	5.4	112
180	GMP-Grade Large-Scale Expansion of Bone-Marrow- (BM) Derived Human Mesenchymal Stem/Stroma Cells (MSC): Comparison of Efficacy of Different Expansion Systems and Role of Cytokines/Chemokines. Blood, 2010, 116, 337-337.	1.4	1

#	Article	IF	CITATIONS
181	Fluorescent Polyurethane Nanocapsules Prepared via Inverse Miniemulsion: Surface Functionalization for Use as Biocarriers. Macromolecular Bioscience, 2009, 9, 575-584.	4.1	62
182	Myocardial inflammation and non-ischaemic heart failure: is there a role for C-reactive protein?. Basic Research in Cardiology, 2009, 104, 591-599.	5.9	38
183	Interaction of Nanoparticles with Cells. Biomacromolecules, 2009, 10, 2379-2400.	5.4	518
184	Carboxylated Superparamagnetic Iron Oxide Particles Label Cells Intracellularly Without Transfection Agents. Molecular Imaging and Biology, 2008, 10, 138-146.	2.6	133
185	Successful autologous peripheral blood stem cell transplantation in a Jehovah's Witness with multiple myeloma: review of literature and recommendations for high-dose chemotherapy without support of allogeneic blood products. International Journal of Hematology, 2008, 87, 289-297.	1.6	6
186	Preparation of Biodegradable Polymer Nanoparticles by Miniemulsion Technique and Their Cell Interactions. Macromolecular Bioscience, 2008, 8, 127-139.	4.1	124
187	Synthesis of Fluorescent Polyisoprene Nanoparticles and their Uptake into Various Cells. Macromolecular Bioscience, 2008, 8, 711-727.	4.1	39
188	Uptake Mechanism of Oppositely Charged Fluorescent Nanoparticles in HeLa Cells. Macromolecular Bioscience, 2008, 8, 1135-1143.	4.1	256
189	The First Step into the Brain: Uptake of NIOâ€PBCA Nanoparticles by Endothelial Cells inâ€vitro and inâ€vivo, and Direct Evidence for their Blood–Brain Barrier Permeation. ChemMedChem, 2008, 3, 1395-1403.	3.2	58
190	Nanocapsules Synthesized by Miniemulsion Technique for Application as New Contrast Agent Materials. Macromolecular Chemistry and Physics, 2007, 208, 2229-2241.	2.2	62
191	Cellular Uptake Behavior of Unfunctionalized and Functionalized PBCA Particles Prepared in a Miniemulsion. Macromolecular Bioscience, 2007, 7, 883-896.	4.1	46
192	Axial Resolution Enhancement by 4Pi Confocal Fluorescence Microscopy with Two-Photon Excitation. Journal of Biological Physics, 2007, 33, 433-443.	1.5	11
193	Synthesis and biomedical applications of functionalized fluorescent and magnetic dual reporter nanoparticles as obtained in the miniemulsion process. Journal of Physics Condensed Matter, 2006, 18, S2581-S2594.	1.8	89
194	Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials, 2006, 27, 2820-2828.	11.4	279
195	Preparation of Fluorescent Carboxyl and Amino Functionalized Polystyrene Particles by Miniemulsion Polymerization as Markers for Cells. Macromolecular Chemistry and Physics, 2005, 206, 2440-2449.	2.2	174
196	Miniemulsion Droplets as Single Molecule Nanoreactors for Polymerase Chain Reaction. Biomacromolecules, 2005, 6, 1824-1828.	5.4	51
197	Guillain-Barre-Strohl Syndrome Unraveled as Paraneoplastic Syndrome of B-cell Acute Lymphoblastic Leukemia in a Patient with Preceding Common Variable Immunodeficiency Syndrome with Evans Syndrome. Leukemia and Lymphoma, 2004, 45, 189-192.	1.3	7
198	Severe Pulmonary Toxicity in Patients With Advanced-Stage Hodgkin's Disease Treated With a Modified Bleomycin, Doxorubicin, Cyclophosphamide, Vincristine, Procarbazine, Prednisone, and Gemcitabine (BEACOPP) Regimen Is Probably Related to the Combination of Gemcitabine and Bleomycin: A Report of the German Hodgkin's Lymphoma Study Group. Journal of Clinical Oncology, 2004, 22, 2424-2429.	1.6	67

#	Article	IF	CITATIONS
199	Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia, 2004, 18, 165-166.	7.2	177
200	Vaccination of Patients with Recurrent AML with WT1-Peptide Induces Clinical and Molecular Remissions as Well as Specific Memory and Effector T Cells in Peripheral Blood and Bone Marrow. Journal of Immunotherapy, 2004, 27, S26.	2.4	0
201	Possible regulation of Wilms' tumour gene 1 (WT1) expression by the paired box genes PAX2 and PAX8 and by the haematopoietic transcription factor GATA-1 in human acute myeloid leukaemias. British Journal of Haematology, 2003, 123, 235-242.	2.5	28
202	CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood, 2002, 100, 2132-2137.	1.4	245
203	Resistance of ex vivo expanded CD3 + CD56 + T cells to Fas-mediated apoptosis. Cancer Immunology, Immunotherapy, 2000, 49, 335-345.	4.2	62
204	Visualizing the kinetics of tumor-cell clearance in living animals. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12044-12049.	7.1	357
205	<title>Functional analysis of tumor cell growth and clearance in living animals</title> ., 1999, 3600, 136.		O
206	Myotonia levior is a chloride channel disorder. Human Molecular Genetics, 1995, 4, 1397-1402.	2.9	80
207	Nanodrugs Targeting T Cells in Tumor Therapy. Frontiers in Immunology, 0, 13, .	4.8	13