List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/757842/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nature Nanotechnology, 2016, 11, 372-377.	31.5	969
2	Interaction of Nanoparticles with Cells. Biomacromolecules, 2009, 10, 2379-2400.	5.4	518
3	Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line. ACS Nano, 2011, 5, 1657-1669.	14.6	516
4	Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular Uptake. Biomacromolecules, 2015, 16, 1311-1321.	5.4	497
5	Visualizing the kinetics of tumor-cell clearance in living animals. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12044-12049.	7.1	357
6	Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials, 2006, 27, 2820-2828.	11.4	279
7	Uptake Mechanism of Oppositely Charged Fluorescent Nanoparticles in HeLa Cells. Macromolecular Bioscience, 2008, 8, 1135-1143.	4.1	256
8	Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy, 2012, 14, 540-554.	0.7	246
9	CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood, 2002, 100, 2132-2137.	1.4	245
10	Controlling the Stealth Effect of Nanocarriers through Understanding the Protein Corona. Angewandte Chemie - International Edition, 2016, 55, 8806-8815.	13.8	215
11	Amino-Functionalized Polystyrene Nanoparticles Activate the NLRP3 Inflammasome in Human Macrophages. ACS Nano, 2011, 5, 9648-9657.	14.6	211
12	Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nature Nanotechnology, 2018, 13, 862-869.	31.5	210
13	Visualization of the protein corona: towards a biomolecular understanding of nanoparticle-cell-interactions. Nanoscale, 2017, 9, 8858-8870.	5.6	203
14	Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition. Nanoscale, 2015, 7, 2992-3001.	5.6	193
15	How Shape Influences Uptake: Interactions of Anisotropic Polymer Nanoparticles and Human Mesenchymal Stem Cells. Small, 2012, 8, 2222-2230.	10.0	180
16	Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia, 2004, 18, 165-166.	7.2	177
17	Preparation of Fluorescent Carboxyl and Amino Functionalized Polystyrene Particles by Miniemulsion Polymerization as Markers for Cells. Macromolecular Chemistry and Physics, 2005, 206, 2440-2449.	2.2	174
18	Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials, 2010, 31, 9015-9022.	11.4	173

#	Article	IF	CITATIONS
19	Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chemical Communications, 2015, 51, 431-434.	4.1	168
20	Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions. Beilstein Journal of Nanotechnology, 2014, 5, 2403-2412.	2.8	165
21	From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. Journal of Polymer Science Part A, 2010, 48, 493-515.	2.3	155
22	The challenges of oral drug delivery via nanocarriers. Drug Delivery, 2018, 25, 1694-1705.	5.7	151
23	Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials, 2016, 85, 78-87.	11.4	141
24	The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials, 2010, 31, 5063-5071.	11.4	140
25	Carbohydrateâ€Based Nanocarriers Exhibiting Specific Cell Targeting with Minimum Influence from the Protein Corona. Angewandte Chemie - International Edition, 2015, 54, 7436-7440.	13.8	137
26	BSA Adsorption on Differently Charged Polystyrene Nanoparticles using Isothermal Titration Calorimetry and the Influence on Cellular Uptake. Macromolecular Bioscience, 2011, 11, 628-638.	4.1	135
27	Carboxylated Superparamagnetic Iron Oxide Particles Label Cells Intracellularly Without Transfection Agents. Molecular Imaging and Biology, 2008, 10, 138-146.	2.6	133
28	Elastic Superhydrophobic and Photocatalytic Active Films Used as Blood Repellent Dressing. Advanced Materials, 2020, 32, e1908008.	21.0	129
29	Preparation of Biodegradable Polymer Nanoparticles by Miniemulsion Technique and Their Cell Interactions. Macromolecular Bioscience, 2008, 8, 127-139.	4.1	124
30	Enzyme Responsive Hyaluronic Acid Nanocapsules Containing Polyhexanide and Their Exposure to Bacteria To Prevent Infection. Biomacromolecules, 2013, 14, 1103-1112.	5.4	122
31	Biomaterial Surface Hydrophobicity-Mediated Serum Protein Adsorption and Immune Responses. ACS Applied Materials & Interfaces, 2019, 11, 27615-27623.	8.0	122
32	Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake. Nanoscale, 2016, 8, 5526-5536.	5.6	120
33	Specific Effects of Surface Amines on Polystyrene Nanoparticles in their Interactions with Mesenchymal Stem Cells. Biomacromolecules, 2010, 11, 748-753.	5.4	112
34	Bioactive and biodegradable silica biomaterial for bone regeneration. Bone, 2014, 67, 292-304.	2.9	108
35	The Influence of Nanoparticle Shape on Protein Corona Formation. Small, 2020, 16, e2000285.	10.0	108
36	Results of Intracoronary Stem Cell Therapy After Acute Myocardial Infarction. American Journal of Cardiology, 2010, 105, 804-812.	1.6	102

#	Article	IF	CITATIONS
37	Exploiting the biomolecular corona: pre-coating of nanoparticles enables controlled cellular interactions. Nanoscale, 2018, 10, 10731-10739.	5.6	101
38	Annihilation Upconversion in Cells by Embedding the Dye System in Polymeric Nanocapsules. Macromolecular Bioscience, 2011, 11, 772-778.	4.1	98
39	Super liquid-repellent gas membranes for carbon dioxide capture and heart–lung machines. Nature Communications, 2013, 4, 2512.	12.8	98
40	Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells. Nanoscale, 2011, 3, 2028.	5.6	96
41	Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials, 2017, 115, 1-8.	11.4	94
42	Synthesis and biomedical applications of functionalized fluorescent and magnetic dual reporter nanoparticles as obtained in the miniemulsion process. Journal of Physics Condensed Matter, 2006, 18, S2581-S2594.	1.8	89
43	Suppressing Unspecific Cell Uptake for Targeted Delivery Using Hydroxyethyl Starch Nanocapsules. Biomacromolecules, 2012, 13, 2704-2715.	5.4	89
44	Genotoxic effects of zinc oxide nanoparticles. Nanoscale, 2015, 7, 8931-8938.	5.6	89
45	Hydrophilicity Regulates the Stealth Properties of Polyphosphoesterâ€Coated Nanocarriers. Angewandte Chemie - International Edition, 2018, 57, 5548-5553.	13.8	88
46	Rutheniumâ€Containing Block Copolymer Assemblies:ÂRedâ€Lightâ€Responsive Metallopolymers with Tunable Nanostructures for Enhanced Cellular Uptake and Anticancer Phototherapy. Advanced Healthcare Materials, 2016, 5, 467-473.	7.6	87
47	Brush Conformation of Polyethylene Glycol Determines the Stealth Effect of Nanocarriers in the Low Protein Adsorption Regime. Nano Letters, 2021, 21, 1591-1598.	9.1	87
48	Mass Spectrometry and Imaging Analysis of Nanoparticle-Containing Vesicles Provide a Mechanistic Insight into Cellular Trafficking. ACS Nano, 2014, 8, 10077-10088.	14.6	84
49	Triplet– <scp>T</scp> riplet Annihilation Upconversion Based Nanocapsules for Bioimaging Under Excitation by Red and Deepâ€ <scp>R</scp> ed Light. Macromolecular Bioscience, 2013, 13, 1422-1430.	4.1	83
50	Redâ€Lightâ€Controlled Release of Drug–Ru Complex Conjugates from Metallopolymer Micelles for Phototherapy in Hypoxic Tumor Environments. Advanced Functional Materials, 2018, 28, 1804227.	14.9	82
51	Myotonia levior is a chloride channel disorder. Human Molecular Genetics, 1995, 4, 1397-1402.	2.9	80
52	Protein corona composition of poly(ethylene glycol)- and poly(phosphoester)-coated nanoparticles correlates strongly with the amino acid composition of the protein surface. Nanoscale, 2017, 9, 2138-2144.	5.6	76
53	Amino-functionalized nanoparticles as inhibitors of mTOR and inducers of cell cycle arrest in leukemia cells. Biomaterials, 2014, 35, 1944-1953.	11.4	74
54	Ferrocenyl Glycidyl Ether: A Versatile Ferrocene Monomer for Copolymerization with Ethylene Oxide to Water-Soluble, Thermoresponsive Copolymers. Macromolecules, 2013, 46, 647-655.	4.8	71

#	Article	IF	CITATIONS
55	The Transferability from Animal Models to Humans: Challenges Regarding Aggregation and Protein Corona Formation of Nanoparticles. Biomacromolecules, 2018, 19, 374-385.	5.4	70
56	Severe Pulmonary Toxicity in Patients With Advanced-Stage Hodgkin's Disease Treated With a Modified Bleomycin, Doxorubicin, Cyclophosphamide, Vincristine, Procarbazine, Prednisone, and Gemcitabine (BEACOPP) Regimen Is Probably Related to the Combination of Gemcitabine and Bleomycin: A Report of the German Hodgkin's Lymphoma Study Group. Journal of Clinical Oncology, 2004, 22, 2424-2429.	1.6	67
57	Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations. Scientific Reports, 2016, 6, 34843.	3.3	66
58	Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects. Beilstein Journal of Nanotechnology, 2014, 5, 2388-2397.	2.8	65
59	Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. Acta Biomaterialia, 2018, 76, 217-224.	8.3	65
60	How to Coat the Inside of Narrow and Long Tubes with a Super‣iquidâ€Repellent Layer—A Promising Candidate for Antibacterial Catheters. Advanced Materials, 2019, 31, e1801324.	21.0	65
61	Criteria impacting the cellular uptake of nanoparticles: A study emphasizing polymer type and surfactant effects. Acta Biomaterialia, 2011, 7, 4160-4168.	8.3	64
62	Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?. Chemistry - A European Journal, 2017, 23, 10832-10837.	3.3	63
63	The Protein Corona as a Confounding Variable of Nanoparticle-Mediated Targeted Vaccine Delivery. Frontiers in Immunology, 2018, 9, 1760.	4.8	63
64	Resistance of ex vivo expanded CD3 + CD56 + T cells to Fas-mediated apoptosis. Cancer Immunology, Immunotherapy, 2000, 49, 335-345.	4.2	62
65	Nanocapsules Synthesized by Miniemulsion Technique for Application as New Contrast Agent Materials. Macromolecular Chemistry and Physics, 2007, 208, 2229-2241.	2.2	62
66	Fluorescent Polyurethane Nanocapsules Prepared via Inverse Miniemulsion: Surface Functionalization for Use as Biocarriers. Macromolecular Bioscience, 2009, 9, 575-584.	4.1	62
67	Beyond the protein corona – lipids matter for biological response of nanocarriers. Acta Biomaterialia, 2018, 71, 420-431.	8.3	61
68	The Softer and More Hydrophobic the Better: Influence of the Side Chain of Polymethacrylate Nanoparticles for Cellular Uptake. Macromolecular Bioscience, 2010, 10, 1034-1042.	4.1	60
69	Polymeric nanoparticles of different sizes overcome the cell membrane barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 265-274.	4.3	59
70	Nanocapsules with specific targeting and release properties using miniemulsion polymerization . Expert Opinion on Drug Delivery, 2013, 10, 593-609.	5.0	59
71	Size-Dependent Knockdown Potential of siRNA-Loaded Cationic Nanohydrogel Particles. Biomacromolecules, 2014, 15, 4111-4121.	5.4	59
72	The First Step into the Brain: Uptake of NIOâ€PBCA Nanoparticles by Endothelial Cells inâ€vitro and inâ€vivo, and Direct Evidence for their Blood–Brain Barrier Permeation. ChemMedChem, 2008, 3, 1395-1403.	3.2	58

5

#	Article	IF	CITATIONS
73	Functionalization of Liposomes with Hydrophilic Polymers Results in Macrophage Uptake Independent of the Protein Corona. Biomacromolecules, 2019, 20, 2989-2999.	5.4	56
74	Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nature Communications, 2018, 9, 5306.	12.8	55
75	The Marine Sponge-Derived Inorganic Polymers, Biosilica and Polyphosphate, as Morphogenetically Active Matrices/Scaffolds for the Differentiation of Human Multipotent Stromal Cells: Potential Application in 3D Printing and Distraction Osteogenesis. Marine Drugs, 2014, 12, 1131-1147.	4.6	54
76	Tailoring the stealth properties of biocompatible polysaccharide nanocontainers. Biomaterials, 2015, 49, 125-134.	11.4	53
77	Miniemulsion Droplets as Single Molecule Nanoreactors for Polymerase Chain Reaction. Biomacromolecules, 2005, 6, 1824-1828.	5.4	51
78	Effect of functionalised fluorescence-labelled nanoparticles on mesenchymal stem cell differentiation. Biomaterials, 2010, 31, 2064-2071.	11.4	51
79	Paclitaxel-loaded polyphosphate nanoparticles: a potential strategy for bone cancer treatment. Journal of Materials Chemistry B, 2014, 2, 1298.	5.8	48
80	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie - International Edition, 2020, 59, 20008-20016.	13.8	48
81	Cellular Uptake Behavior of Unfunctionalized and Functionalized PBCA Particles Prepared in a Miniemulsion. Macromolecular Bioscience, 2007, 7, 883-896.	4.1	46
82	Interleukin-2 Functionalized Nanocapsules for T Cell-Based Immunotherapy. ACS Nano, 2016, 10, 9216-9226.	14.6	45
83	(Oligo)mannose functionalized hydroxyethyl starch nanocapsules: en route to drug delivery systems with targeting properties. Journal of Materials Chemistry B, 2013, 1, 4338.	5.8	44
84	Protein machineries defining pathways of nanocarrier exocytosis and transcytosis. Acta Biomaterialia, 2018, 71, 432-443.	8.3	44
85	Protein denaturation caused by heat inactivation detrimentally affects biomolecular corona formation and cellular uptake. Nanoscale, 2018, 10, 21096-21105.	5.6	42
86	Surface Roughness and Charge Influence the Uptake of Nanoparticles: Fluorescently Labeled Pickeringâ€Type Versus Surfactantâ€Stabilized Nanoparticles. Macromolecular Bioscience, 2012, 12, 1459-1471.	4.1	41
87	Design, Synthesis, and Miniemulsion Polymerization of New Phosphonate Surfmers and Application Studies of the Resulting Nanoparticles as Model Systems for Biomimetic Mineralization and Cellular Uptake. Chemistry - A European Journal, 2012, 18, 5201-5212.	3.3	41
88	Bioinspired phosphorylcholine containing polymer films with silver nanoparticles combining antibacterial properties. Biomaterials Science, 2013, 1, 470.	5.4	41
89	Drug delivery without nanoparticle uptake: delivery by a kiss-and-run mechanism on the cell membrane. Chemical Communications, 2014, 50, 1369-1371.	4.1	40
90	Upconversion Nanocarriers Encapsulated with Photoactivatable Ru Complexes for Nearâ€Infrared Lightâ€Regulated Enzyme Activity. Small, 2017, 13, 1700997.	10.0	40

#	Article	IF	CITATIONS
91	Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions. Angewandte Chemie - International Edition, 2018, 57, 12626-12648.	13.8	40
92	Synthesis of Fluorescent Polyisoprene Nanoparticles and their Uptake into Various Cells. Macromolecular Bioscience, 2008, 8, 711-727.	4.1	39
93	Myocardial inflammation and non-ischaemic heart failure: is there a role for C-reactive protein?. Basic Research in Cardiology, 2009, 104, 591-599.	5.9	38
94	Live Monitoring of Cargo Release From Peptideâ€Based Hybrid Nanocapsules Induced by Enzyme Cleavage. Macromolecular Rapid Communications, 2012, 33, 248-253.	3.9	35
95	Advanced dextran based nanogels for fightingStaphylococcus aureusinfections by sustained zinc release. Journal of Materials Chemistry B, 2014, 2, 2175-2183.	5.8	35
96	Zinc release from atomic layer deposited zinc oxide thin films and its antibacterial effect on Escherichia coli. Applied Surface Science, 2013, 287, 375-380.	6.1	33
97	Pre-coating with protein fractions inhibits nano-carrier aggregation in human blood plasma. RSC Advances, 2016, 6, 96495-96509.	3.6	33
98	Delivering all in one: Antigen-nanocapsule loaded with dual adjuvant yields superadditive effects by DC-directed T cell stimulation. Journal of Controlled Release, 2018, 289, 23-34.	9.9	33
99	Density of Conjugated Antibody Determines the Extent of Fc Receptor Dependent Capture of Nanoparticles by Liver Sinusoidal Endothelial Cells. ACS Nano, 2021, 15, 15191-15209.	14.6	32
100	Prevention of Dominant IgG Adsorption on Nanocarriers in IgGâ€Enriched Blood Plasma by Clusterin Precoating. Advanced Science, 2019, 6, 1802199.	11.2	31
101	A bio-orthogonal functionalization strategy for site-specific coupling of antibodies on vesicle surfaces after self-assembly. Polymer Chemistry, 2020, 11, 527-540.	3.9	31
102	Labeling of mesenchymal stromal cells with iron oxide–poly(l-lactide) nanoparticles for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties. Cytotherapy, 2011, 13, 962-975.	0.7	30
103	HPMA Copolymers as Surfactants in the Preparation of Biocompatible Nanoparticles for Biomedical Application. Biomacromolecules, 2012, 13, 4179-4187.	5.4	30
104	Nanomedicine at the crossroads – A quick guide for IVIVC. Advanced Drug Delivery Reviews, 2021, 179, 113829.	13.7	29
105	Unraveling the In Vivo Protein Corona. Cells, 2021, 10, 132.	4.1	29
106	Temperature Sensing in Cells Using Polymeric Upconversion Nanocapsules. Biomacromolecules, 2020, 21, 4469-4478.	5.4	29
107	Possible regulation of Wilms' tumour gene 1 (WT1) expression by the paired box genes PAX2 and PAX8 and by the haematopoietic transcription factor GATA-1 in human acute myeloid leukaemias. British Journal of Haematology, 2003, 123, 235-242.	2.5	28
108	Nanocarrier for Oral Peptide Delivery Produced by Polyelectrolyte Complexation in Nanoconfinement. Biomacromolecules, 2015, 16, 2282-2287.	5.4	28

#	Article	IF	CITATIONS
109	Complex encounters: nanoparticles in whole blood and their uptake into different types of white blood cells. Nanomedicine, 2013, 8, 699-713.	3.3	27
110	Functionalized Polystyrene Nanoparticles Trigger Human Dendritic Cell Maturation Resulting in Enhanced CD4 ⁺ T Cell Activation. Macromolecular Bioscience, 2012, 12, 1637-1647.	4.1	26
111	Synthesis of Polyester Nanoparticles in Miniemulsion Obtained by Radical Ringâ€Opening of BMDO and Their Potential as Biodegradable Drug Carriers. Macromolecular Bioscience, 2012, 12, 165-175.	4.1	26
112	Controlling protein interactions in blood for effective liver immunosuppressive therapy by silica nanocapsules. Nanoscale, 2020, 12, 2626-2637.	5.6	26
113	On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles. Beilstein Journal of Nanotechnology, 2016, 7, 1296-1311.	2.8	25
114	Nanoparticles Surface Chemistry Influence on Protein Corona Composition and Inflammatory Responses. Nanomaterials, 2022, 12, 682.	4.1	25
115	Imaging the intracellular degradation of biodegradable polymer nanoparticles. Beilstein Journal of Nanotechnology, 2014, 5, 1905-1917.	2.8	22
116	Extracellular electrical recording of pH-triggered bursts in C6 glioma cell populations. Science Advances, 2016, 2, e1600516.	10.3	22
117	Versatile Preparation of Silica Nanocapsules for Biomedical Applications. Particle and Particle Systems Characterization, 2020, 37, 1900484.	2.3	22
118	DNA Amplification via Polymerase Chain Reaction Inside Miniemulsion Droplets with Subsequent Poly(<i>n</i> â€butylcyanoacrylate) Shell Formation and Delivery of Polymeric Capsules into Mammalian Cells. Macromolecular Bioscience, 2011, 11, 1099-1109.	4.1	21
119	The chemotherapeutic agent topotecan differentially modulates the phenotype and function of dendritic cells. Cancer Immunology, Immunotherapy, 2013, 62, 1315-1326.	4.2	21
120	Proteinâ€Coronaâ€byâ€Design in 2D: A Reliable Platform to Decode Bio–Nano Interactions for the Nextâ€Generation Qualityâ€byâ€Design Nanomedicines. Advanced Materials, 2018, 30, e1802732.	21.0	21
121	Monitoring of Cell Layer Integrity with a Currentâ€Driven Organic Electrochemical Transistor. Advanced Healthcare Materials, 2019, 8, e1900128.	7.6	20
122	Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirusâ€5. Angewandte Chemie - International Edition, 2020, 59, 5712-5720.	13.8	20
123	Highly Site Specific, Protease Cleavable, Hydrophobic Peptide–Polymer Nanoparticles. Macromolecules, 2011, 44, 6258-6267.	4.8	19
124	Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation. Beilstein Journal of Nanotechnology, 2015, 6, 383-395.	2.8	19
125	Sequence-Controlled Delivery of Peptides from Hierarchically Structured Nanomaterials. ACS Applied Materials & Interfaces, 2017, 9, 3885-3894.	8.0	19
126	Covalently Binding of Bovine Serum Albumin to Unsaturated Poly(Globalideâ€Coâ€Îµâ€Caprolactone) Nanoparticles by Thiolâ€Ene Reactions. Macromolecular Bioscience, 2019, 19, e1900145.	4.1	19

#	Article	IF	CITATIONS
127	Polyphosphoester surfactants as general stealth coatings for polymeric nanocarriers. Acta Biomaterialia, 2020, 116, 318-328.	8.3	19
128	Pharmacokinetics on a microscale: visualizing Cy5-labeled oligonucleotide release from poly(n-butylcyanoacrylate) nanocapsules in cells. International Journal of Nanomedicine, 2014, 9, 5471.	6.7	18
129	Nanoparticles and antigen-specific T-cell therapeutics: a comprehensive study on uptake and release. Nanomedicine, 2015, 10, 1063-1076.	3.3	18
130	Polymeric hepatitis C virus non-structural protein 5A nanocapsules induce intrahepatic antigen-specific immune responses. Biomaterials, 2016, 108, 1-12.	11.4	18
131	Endocytosis and intracellular processing of nanoparticles in dendritic cells: routes to effective immunonanomedicines. Nanomedicine, 2016, 11, 2625-2630.	3.3	18
132	Validation of weak biological effects by round robin experiments: cytotoxicity/biocompatibility of SiO2 and polymer nanoparticles in HepG2 cells. Scientific Reports, 2017, 7, 4341.	3.3	18
133	Denaturation via Surfactants Changes Composition of Protein Corona. Biomacromolecules, 2018, 19, 2657-2664.	5.4	18
134	Enhanced photoluminescence properties of a carbon dot system through surface interaction with polymeric nanoparticles. Journal of Colloid and Interface Science, 2018, 518, 11-20.	9.4	18
135	Modulating Protein Corona and Materials–Cell Interactions with Temperatureâ€Responsive Materials. Advanced Functional Materials, 2022, 32, .	14.9	18
136	Preservation of dendritic cell function upon labeling with amino functionalized polymeric nanoparticles. Biomaterials, 2010, 31, 7086-7095.	11.4	17
137	Staining of Mitochondria with Cy5-Labeled Oligonucleotides for Long-Term Microscopy Studies. Microscopy and Microanalysis, 2011, 17, 440-445.	0.4	17
138	Direct and indirect effects of functionalised fluorescence-labelled nanoparticles on human osteoclast formation and activity. Biomaterials, 2011, 32, 1706-1714.	11.4	17
139	Protein deglycosylation can drastically affect the cellular uptake. Nanoscale, 2019, 11, 10727-10737.	5.6	17
140	Water-dispersed semiconductor nanoplatelets with high fluorescence brightness, chemical and colloidal stability. Journal of Materials Chemistry B, 2020, 8, 146-154.	5.8	17
141	Polysaccharide-Based pH-Responsive Nanocapsules Prepared with Bio-Orthogonal Chemistry and Their Use as Responsive Delivery Systems. Biomacromolecules, 2020, 21, 2764-2771.	5.4	17
142	Monitoring Reversible Tight Junction Modulation with a Currentâ€Driven Organic Electrochemical Transistor. Advanced Materials Technologies, 2021, 6, 2000940.	5.8	17
143	Characterization of MRI contrast agentâ€loaded polymeric nanocapsules as versatile vehicle for targeted imaging. Contrast Media and Molecular Imaging, 2010, 5, 59-69.	0.8	16
144	Competitive Cellular Uptake of Nanoparticles Made From Polystyrene, Poly(methyl methacrylate), and Polylactide. Macromolecular Bioscience, 2012, 12, 454-464.	4.1	16

#	Article	IF	CITATIONS
145	Fully degradable protein nanocarriers by orthogonal photoclick tetrazole–ene chemistry for the encapsulation and release. Nanoscale Horizons, 2017, 2, 297-302.	8.0	15
146	Protein Corona Mediated Stealth Properties of Biocompatible Carbohydrateâ€based Nanocarriers. Israel Journal of Chemistry, 2018, 58, 1363-1372.	2.3	15
147	Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream. Biomacromolecules, 2022, 23, 1065-1074.	5.4	15
148	Enzyme cleavable nanoparticles from peptide based triblock copolymers. Nanoscale, 2013, 5, 4829.	5.6	14
149	Low frequency electric current noise in glioma cell populations. Journal of Materials Chemistry B, 2015, 3, 5035-5039.	5.8	14
150	>Silica Nanocapsules with Different Sizes and Physicochemical Properties as Suitable Nanocarriers for Uptake in T-Cells. International Journal of Nanomedicine, 2020, Volume 15, 6069-6084.	6.7	14
151	Contactless Nanoparticle-Based Guiding of Cells by Controllable Magnetic Fields. Nanotechnology, Science and Applications, 2021, Volume 14, 91-100.	4.6	14
152	Glutathione Responsive Hyaluronic Acid Nanocapsules Obtained by Bioorthogonal Interfacial "Click― Reaction. Biomacromolecules, 2016, 17, 148-153.	5.4	13
153	Highly Loaded Semipermeable Nanocapsules for Magnetic Resonance Imaging. Macromolecular Bioscience, 2018, 18, e1700387.	4.1	13
154	Amphiphilic dendrimers control protein binding and corona formation on liposome nanocarriers. Chemical Communications, 2020, 56, 8663-8666.	4.1	13
155	Phototriggerable 2′,7-Caged Paclitaxel. PLoS ONE, 2012, 7, e43657.	2.5	13
156	Nanodrugs Targeting T Cells in Tumor Therapy. Frontiers in Immunology, 0, 13, .	4.8	13
157	Temperature, concentration, and surface modification influence the cellular uptake and the protein corona of polystyrene nanoparticles. Acta Biomaterialia, 2022, 148, 271-278.	8.3	13
158	Tailor-Made Nanocontainers for Combined Magnetic-Field-Induced Release and MRI. Macromolecular Bioscience, 2014, 14, 1205-1214.	4.1	12
159	Heparinâ€Based Nanocapsules as Potential Drug Delivery Systems. Macromolecular Bioscience, 2015, 15, 765-776.	4.1	12
160	The conjugation strategy affects antibody orientation and targeting properties of nanocarriers. Nanoscale, 2021, 13, 9816-9824.	5.6	12
161	Mechanistic investigation of thermosensitive liposome immunogenicity and understanding the drivers for circulation half-life: A polyethylene glycol versus 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol study. Journal of Controlled Release, 2021, 333, 1-15.	9.9	12
162	Axial Resolution Enhancement by 4Pi Confocal Fluorescence Microscopy with Two-Photon Excitation. Journal of Biological Physics, 2007, 33, 433-443.	1.5	11

#	Article	IF	CITATIONS
163	Nanoprobing the acidification process during intracellular uptake and trafficking. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1585-1596.	3.3	11
164	Die Steuerung des Stealthâ€Effekts von NanotrÃǥern durch das Verstädnis der Proteinkorona. Angewandte Chemie, 2016, 128, 8950-8959.	2.0	11
165	Noncovalent Targeting of Nanocarriers to Immune Cells with Polyphosphoesterâ€Based Surfactants in Human Blood Plasma. Advanced Science, 2019, 6, 1901199.	11.2	11
166	Preparation of the protein corona: How washing shapes the proteome and influences cellular uptake of nanocarriers. Acta Biomaterialia, 2020, 114, 333-342.	8.3	11
167	Overcoming the barrier of CD8+ T cells: Two types of nano-sized carriers for siRNA transport. Acta Biomaterialia, 2019, 100, 338-351.	8.3	10
168	Antibody-Functionalized Carnauba Wax Nanoparticles to Target Breast Cancer Cells. ACS Applied Bio Materials, 2022, 5, 622-629.	4.6	10
169	Performing Encapsulation of dsDNA and a Polymerase Chain Reaction (PCR) inside Nanocontainers Using the Inverse Miniemulsion Process. International Journal of Artificial Organs, 2012, 35, 77-83.	1.4	9
170	Hydrophilie als bestimmender Faktor des Stealthâ€Effekts von Polyphosphoesterâ€funktionalisierten NanotrÃgern. Angewandte Chemie, 2018, 130, 5647-5653.	2.0	9
171	Bio-orthogonal triazolinedione (TAD) crosslinked protein nanocapsules affect protein adsorption and cell interaction. Polymer Chemistry, 2020, 11, 3821-3830.	3.9	9
172	Achieving dendritic cell subset-specific targeting in vivo by site-directed conjugation of targeting antibodies to nanocarriers. Nano Today, 2022, 43, 101375.	11.9	9
173	Pharmacology of nanocarriers on the microscale: importance of uptake mechanisms and intracellular trafficking for efficient drug delivery. Nanomedicine, 2013, 8, 321-323.	3.3	8
174	How Low Can You Go? Low Densities of Poly(ethylene glycol) Surfactants Attract Stealth Proteins. Macromolecular Bioscience, 2018, 18, e1800075.	4.1	8
175	Temperatureâ€Responsive Nanoparticles Enable Specific Binding of Apolipoproteins from Human Plasma. Small, 2022, 18, e2103138.	10.0	8
176	Guillain-Barre-Strohl Syndrome Unraveled as Paraneoplastic Syndrome of B-cell Acute Lymphoblastic Leukemia in a Patient with Preceding Common Variable Immunodeficiency Syndrome with Evans Syndrome. Leukemia and Lymphoma, 2004, 45, 189-192.	1.3	7
177	Stabilization of Nanoparticles Synthesized by Miniemulsion Polymerization Using "Green―Aminoâ€Acid Based Surfactants. Macromolecular Symposia, 2014, 337, 9-17.	0.7	7
178	HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules. Acta Biomaterialia, 2016, 35, 12-22.	8.3	7
179	Cellular Uptake of siRNA-Loaded Nanocarriers to Knockdown PD-L1: Strategies to Improve T-cell Functions. Cells, 2020, 9, 2043.	4.1	7
180	Ultra-small gold nanoclusters assembled on plasma polymer-modified zeolites: a multifunctional nanohybrid with anti-haemorrhagic and anti-inflammatory properties. Nanoscale, 2021, 13, 19936-19945.	5.6	7

#	Article	IF	CITATIONS
181	Successful autologous peripheral blood stem cell transplantation in a Jehovah's Witness with multiple myeloma: review of literature and recommendations for high-dose chemotherapy without support of allogeneic blood products. International Journal of Hematology, 2008, 87, 289-297.	1.6	6
182	Interaction of <i>N</i> -(2-Hydroxypropyl)Methacrylamide Based Homo, Random and Block Copolymers with Primary Immune Cells. Journal of Biomedical Nanotechnology, 2014, 10, 81-91.	1.1	6
183	Peptidomimetic inhibitors of TMPRSS2 block SARS-CoV-2 infection in cell culture. Communications Biology, 2022, 5, .	4.4	6
184	Phosphonylation Controls the Protein Corona of Multifunctional Polyglycerolâ€Modified Nanocarriers. Macromolecular Bioscience, 2019, 19, 1800468.	4.1	5
185	Nanovaccine impact on dendritic cells: transcriptome analysis enables new insights into antigen and adjuvant effects. Nanomedicine, 2020, 15, 2053-2069.	3.3	5
186	Multicomponent encapsulation into fully degradable protein nanocarriers <i>via</i> interfacial azide–alkyne click reaction in miniemulsion allows the co-delivery of immunotherapeutics. Nanoscale Horizons, 2022, 7, 908-915.	8.0	5
187	Timing of Heparin Addition to the Biomolecular Corona Influences the Cellular Uptake of Nanocarriers. Biomacromolecules, 2019, 20, 3724-3732.	5.4	4
188	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie, 2020, 132, 20183-20191.	2.0	4
189	Novel Biodegradable Composite of Calcium Phosphate Cement and the Collagen I Mimetic P-15 for Pedicle Screw Augmentation in Osteoporotic Bone. Biomedicines, 2021, 9, 1392.	3.2	4
190	Absolute Quantitation of Subâ€ <scp>M</scp> icrometer Particles in Cells by Flow Cytometry. Macromolecular Bioscience, 2013, 13, 1568-1575.	4.1	3
191	Engineering von Proteinen an OberflÄchen: Von komplementÄrer Charakterisierung zu MaterialoberflÄchen mit maÄÿgeschneiderten Funktionen. Angewandte Chemie, 2018, 130, 12806-12830.	2.0	3
192	From In Silico to Experimental Validation: Tailoring Peptide Substrates for a Serine Protease. Biomacromolecules, 2020, 21, 1636-1643.	5.4	3
193	Heparin modulates the cellular uptake of nanomedicines. Biomaterials Science, 2021, 9, 1227-1231.	5.4	3
194	Structure-Based Design of High-Affinity and Selective Peptidomimetic Hepsin Inhibitors. Biomacromolecules, 2022, 23, 2236-2242.	5.4	3
195	Proteomics reveals differential adsorption of angiogenic platelet lysate proteins on calcium phosphate bone substitute materials. International Journal of Energy Production and Management, 2022, 9, .	3.7	3
196	Protein Corona: Prevention of Dominant IgG Adsorption on Nanocarriers in IgGâ€Enriched Blood Plasma by Clusterin Precoating (Adv. Sci. 10/2019). Advanced Science, 2019, 6, 1970062.	11.2	2
197	Nanoparticle Shape: The Influence of Nanoparticle Shape on Protein Corona Formation (Small) Tj ETQq1 1 0.7843	14 rgBT	/Overlock 10
198	Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirusâ€5. Angewandte	2.0	2

Chemie, 2020, 132, 5761-5769.

#	Article	IF	CITATIONS
199	Visualizing the Protein Corona: A Qualitative and Quantitative Approach towards the Nano-bio-interface. Microscopy and Microanalysis, 2017, 23, 1188-1189.	0.4	1
200	The Role of the Protein Corona in the Uptake Process of Nanoparticles. Microscopy and Microanalysis, 2018, 24, 1404-1405.	0.4	1
201	Nanocarriers and Immune Cells. Nanoscience and Technology, 2019, , 255-279.	1.5	1
202	GMP-Grade Large-Scale Expansion of Bone-Marrow- (BM) Derived Human Mesenchymal Stem/Stroma Cells (MSC): Comparison of Efficacy of Different Expansion Systems and Role of Cytokines/Chemokines. Blood, 2010, 116, 337-337.	1.4	1
203	Abstract 3872: Genotoxicity of zinc oxid nanoparticles and the activation of ATM-Chk2 DNA-damage-response pathway are caused by zinc-ions. , 2015, , .		1
204	<title>Functional analysis of tumor cell growth and clearance in living animals</title> . , 1999, 3600, 136.		0
205	Vaccination of Patients with Recurrent AML with WT1-Peptide Induces Clinical and Molecular Remissions as Well as Specific Memory and Effector T Cells in Peripheral Blood and Bone Marrow. Journal of Immunotherapy, 2004, 27, S26.	2.4	0
206	Multivalency Beats Complexity: A Study on the Cell Uptake of Carbohydrate Functionalized Nanocarriers to Dendritic Cells. Cells, 2020, 9, 2087.	4.1	0
207	Differential uptake of functionalized polystyrene nanoparticles by human macrophages and monocytic cells. FASEB Journal, 2012, 26, 580.9.	0.5	Ο