Anna Maria Ghelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7578305/publications.pdf

Version: 2024-02-01

72 papers 4,353 citations

34 h-index 65 g-index

74 all docs

74 docs citations

74 times ranked 4912 citing authors

#	Article	IF	Citations
1	New Insights on Rotenone Resistance of Complex I Induced by the m.11778G>A/MT-ND4 Mutation Associated with Leber's Hereditary Optic Neuropathy. Molecules, 2022, 27, 1341.	1.7	3
2	Inducing respiratory complex I impairment elicits an increase in PGC1 $\hat{I}\pm$ in ovarian cancer. Scientific Reports, 2022, 12, 8020.	1.6	2
3	Drug repositioning as a therapeutic strategy for neurodegenerations associated with OPA1 mutations. Human Molecular Genetics, 2021, 29, 3631-3645.	1.4	13
4	Organization of the Respiratory Supercomplexes in Cells with Defective Complex III: Structural Features and Metabolic Consequences. Life, 2021, 11, 351.	1.1	4
5	Duplexing complexome profiling with SILAC to study human respiratory chain assembly defects. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148395.	0.5	15
6	Fine-tuning of the respiratory complexes stability and supercomplexes assembly in cells defective of complex III. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148133.	0.5	16
7	Methods and models for functional studies on mtDNA mutations. , 2020, , 305-349.		1
8	Metabolomics hallmarks OPA1 variants correlating with their in vitro phenotype and predicting clinical severity. Human Molecular Genetics, 2020, 29, 1319-1329.	1.4	17
9	Exogenous peptides are able to penetrate human cell and mitochondrial membranes, stabilize mitochondrial tRNA structures, and rescue severe mitochondrial defects. FASEB Journal, 2020, 34, 7675-7686.	0.2	6
10	Reactive Oxygen Species Produced by Mutated Mitochondrial Respiratory Chains of Entire Cells Monitored Using Modified Microelectrodes. ChemElectroChem, 2019, 6, 627-633.	1.7	14
11	Haplogroup J mitogenomes are the most sensitive to the pesticide rotenone: Relevance for human diseases. Neurobiology of Disease, 2018, 114, 129-139.	2.1	22
12	Complex II phosphorylation is triggered by unbalanced redox homeostasis in cells lacking complex III. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 182-190.	0.5	7
13	Mild phenotypes and proper supercomplex assembly in human cells carrying the homoplasmic m.15557GÂ>ÂA mutation in cytochrome <i>b</i>	1.1	5
14	Unravelling the Effects of the Mutation m.3571insC/MT-ND1 on Respiratory Complexes Structural Organization. International Journal of Molecular Sciences, 2018, 19, 764.	1.8	13
15	Manipulation of Mitochondria Dynamics Reveals Separate Roles for Form and Function in Mitochondria Distribution. Cell Reports, 2018, 23, 1742-1753.	2.9	71
16	Mitochondrial metabolism and energy sensing in tumor progression. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 582-590.	0.5	67
17	Melanopsin-expressing retinal ganglion cells are resistant to cell injury, but not always. Mitochondrion, 2017, 36, 77-84.	1.6	18
18	Relationship between supercomplexes organization and electron flux in cells with complex III dysfunctions. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e37-e38.	0.5	0

#	Article	IF	Citations
19	Cigarette toxicity triggers Leber's hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxification pathways. Cell Death and Disease, 2015, 6, e2021-e2021.	2.7	107
20	Targeting estrogen receptor \hat{l}^2 as preventive therapeutic strategy for Leber's hereditary optic neuropathy. Human Molecular Genetics, 2015, 24, ddv396.	1.4	62
21	Mitochondrial Respiratory Supercomplexes in Physiology and Diseases. , 2015, , 149-166.		O
22	Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. Human Molecular Genetics, 2014, 23, 1453-1466.	1.4	96
23	A Novel in-Frame 18-bp Microdeletion in <i>MT-CYB</i> Causes a Multisystem Disorder with Prominent Exercise Intolerance. Human Mutation, 2014, 35, 954-958.	1.1	38
24	Respiratory complex I is essential to induce a Warburg profile in mitochondria-defective tumor cells. Cancer & Metabolism, 2013, 1, 11.	2.4	75
25	Cybrid studies establish the causal link between the mtDNA m.3890G>A/MT-ND1 mutation and optic atrophy with bilateral brainstem lesions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 445-452.	1.8	17
26	The cytochrome b p.278Y>C mutation causative of a multisystem disorder enhances superoxide production and alters supramolecular interactions of respiratory chain complexes. Human Molecular Genetics, 2013, 22, 2141-2151.	1.4	46
27	Molecular mechanisms of superoxide production by complex III: A bacterial versus human mitochondrial comparative case study. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1332-1339.	0.5	65
28	The effects of idebenone on mitochondrial bioenergetics. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 363-369.	0.5	107
29	Oestrogens ameliorate mitochondrial dysfunction in Leber's hereditary optic neuropathy. Brain, 2011, 134, 220-234.	3.7	208
30	Mitochondrial complex I and cell death: a semi-automatic shotgun model. Cell Death and Disease, 2011, 2, e222-e222.	2.7	15
31	A Mutation Threshold Distinguishes the Antitumorigenic Effects of the Mitochondrial Gene <i>MTND1</i> , an <i>Oncojanus</i> Function. Cancer Research, 2011, 71, 6220-6229.	0.4	90
32	A clinically complex form of dominant optic atrophy (OPA8) maps on chromosome 16. Human Molecular Genetics, 2011, 20, 1893-1905.	1.4	36
33	The genetic and metabolic signature of oncocytic transformation implicates HIF1 $\hat{l}\pm$ destabilization. Human Molecular Genetics, 2010, 19, 1019-1032.	1.4	113
34	The Background of Mitochondrial DNA Haplogroup J Increases the Sensitivity of Leber's Hereditary Optic Neuropathy Cells to 2,5-Hexanedione Toxicity. PLoS ONE, 2009, 4, e7922.	1.1	76
35	Respiratory Complex I Dysfunction Due to Mitochondrial DNA Mutations Shifts the Voltage Threshold for Opening of the Permeability Transition Pore toward Resting Levels. Journal of Biological Chemistry, 2009, 284, 2045-2052.	1.6	91
36	An inherited mitochondrial DNA disruptive mutation shifts to homoplasmy in oncocytic tumor cells. Human Mutation, 2009, 30, 391-396.	1.1	55

#	Article	IF	CITATIONS
37	The antioxidant function of Bcl-2 preserves cytoskeletal stability of cells with defective respiratory complex I. Cellular and Molecular Life Sciences, 2008, 65, 2943-2951.	2.4	13
38	Protection against Oxidant-Induced Apoptosis by Exogenous Glutathione in Leber Hereditary Optic Neuropathy Cybrids., 2008, 49, 671.		41
39	OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. Brain, 2008, 131, 352-367.	3.7	285
40	Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9001-9006.	3.3	256
41	Green Tea Modulates α ₁ -Adrenergic Stimulated Glucose Transport in Cultured Rat Cardiomyocytes. Journal of Agricultural and Food Chemistry, 2007, 55, 7553-7558.	2.4	7
42	Defective Oxidative Phosphorylation in Thyroid Oncocytic Carcinoma Is Associated with Pathogenic Mitochondrial DNA Mutations Affecting Complexes I and III. Cancer Research, 2006, 66, 6087-6096.	0.4	204
43	Caspase-independent death of Leber's hereditary optic neuropathy cybrids is driven by energetic failure and mediated by AIF and Endonuclease G. Apoptosis: an International Journal on Programmed Cell Death, 2005, 10, 997-1007.	2.2	113
44	pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochemical and Biophysical Research Communications, 2005, 326, 799-804.	1.0	259
45	The ND1 gene of complex I is a mutational hot spot for Leber's hereditary optic neuropathy. Annals of Neurology, 2004, 56, 631-641.	2.8	102
46	Bioenergetics shapes cellular death pathways in Leber's hereditary optic neuropathy: a model of mitochondrial neurodegeneration. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1658, 172-179.	0.5	102
47	Apoptotic Cell Death of Cybrid Cells Bearing Leber's Hereditary Optic Neuropathy Mutations Is Caspase Independent. Annals of the New York Academy of Sciences, 2003, 1010, 213-217.	1.8	41
48	Staurosporine Induces Apoptotic Volume Decrease (AVD) in ECV304 Cells. Annals of the New York Academy of Sciences, 2003, 1010, 342-346.	1.8	11
49	Leber's Hereditary Optic Neuropathy (LHON) Pathogenic Mutations Induce Mitochondrial-dependent Apoptotic Death in Transmitochondrial Cells Incubated with Galactose Medium. Journal of Biological Chemistry, 2003, 278, 4145-4150.	1.6	169
50	Phospholipase D1 is threonine-phosphorylated in human-airway epithelial cells stimulated by sphingosine-1-phosphate by a mechanism involving Src tyrosine kinase and protein kinase Cl´. Biochemical Journal, 2002, 366, 187-193.	1.7	11
51	7-Ketocholesterol and staurosporine induce opposite changes in intracellular pH, associated with distinct types of cell death in ECV304 cells. Archives of Biochemistry and Biophysics, 2002, 402, 208-217.	1.4	28
52	Phospholipase D stimulation is required for sphingosine-1-phosphate activation of actin stress fibre assembly in human airway epithelial cells. Cellular Signalling, 2002, 14, 75-81.	1.7	41
53	6-Thienyl and 6-phenylimidazo[2,1-b]thiazoles as inhibitors of mitochondrial NADH dehydrogenase. European Journal of Medicinal Chemistry, 1999, 34, 883-889.	2.6	21
54	Ubiquinone and inhibitor sites in complex I: one, two or three?. Biochemical Society Transactions, 1999, 27, 606-609.	1.6	14

#	Article	lF	Citations
55	Measurement of the Membrane Potential Generated by Complex I in Submitochondrial Particles. Journal of Biochemistry, 1997, 121, 746-755.	0.9	17
56	Protonophoric Activity of NADH Coenzyme Q Reductase and ATP Synthase in Coupled Submitochondrial Particles from Horse Platelets. Biochemical and Biophysical Research Communications, 1997, 235, 469-473.	1.0	8
57	Proton pumping of mitochondrial complex I: differential activation by analogs of ubiquinone. Journal of Bioenergetics and Biomembranes, 1997, 29, 71-80.	1.0	27
58	Inhibitor sensitivity of respiratory complex I in human platelets: A possible biomarker of ageing. FEBS Letters, 1996, 380, 176-178.	1.3	47
59	The Interaction of Q Analogs, Particularly Hydroxydecyl Benzoquinone (Idebenone), with the Respiratory Complexes of Heart Mitochondria. Archives of Biochemistry and Biophysics, 1996, 330, 395-400.	1.4	101
60	The specificity of mitochondrial complex I for ubiquinones. Biochemical Journal, 1996, 313, 327-334.	1.7	87
61	Submitochondrial particles as toxicity biosensors of chlorophenols. Environmental Toxicology and Chemistry, 1995, 14, 363-368.	2.2	38
62	Thienylimidazo[2,1-b]thiazoles as Inhibitors of Mitochondrial NADH Dehydrogenase. Journal of Medicinal Chemistry, 1995, 38, 1090-1097.	2.9	14
63	Thienylvinylindoles as inhibitors of mitochondrial NADH dehydrogenase. Pharmaceutica Acta Helvetiae, 1994, 69, 15-20.	1.2	5
64	The mechanism of proton and electron transport in mitochondrial complex I. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 116-120.	0.5	73
65	Functional alterations of the mitochondrially encoded ND4 subunit associated with Leber's hereditary optic neuropathy. FEBS Letters, 1994, 352, 375-379.	1.3	119
66	Natural variation in the potency and binding sites of mitochondrial quinone-like inhibitors. Biochemical Society Transactions, 1994, 22, 209-213.	1.6	35
67	Mitochondrial cytochrome b: evolution and structure of the protein. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1143, 243-271.	0.5	328
68	Complex I and Complex III of Mitochondria Have Common Inhibitors Acting as Ubiquinone Antagonists. Biochemical and Biophysical Research Communications, 1993, 190, 1090-1096.	1.0	99
69	Cytochrome b of fish mitochondria is strongly resistant to funiculosin, a powerful inhibitor of respiration. Archives of Biochemistry and Biophysics, 1992, 295, 198-204.	1.4	15
70	Growth kinetics, polyamine pattern and biosynthesis in hairy root lines of Nicotiana tabacum. Physiologia Plantarum, 1992, 85, 697-703.	2.6	12
71	Cytochrome b of protozoan mitochondria: Relationships between function and structure. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1992, 103, 329-338.	0.2	7
72	The cytochrome b of the sea urchin Paracentrotus lividus is naturally resistant to myxothiazol and mucidin. FEBS Letters, 1990, 263, 245-247.	1.3	12