Nursultan E Sagatov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/75781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	γ-BaB ₂ O ₄ : High-Pressure High-Temperature Polymorph of Barium Borate with Edge-Sharing BO ₄ Tetrahedra. Inorganic Chemistry, 2022, 61, 2340-2350.	4.0	7
2	Novel Calcium sp ³ Carbonate CaC ₂ O ₅ - <i>I</i> 4Ì2 <i>d</i> May Be a Carbon Host in Earth's Lower Mantle. ACS Earth and Space Chemistry, 2022, 6, 73-80.	2.7	13
3	High-Pressure Synthesis, Electronic Properties, and Raman Spectroscopy of Barium Tetraborate BaB ₄ O ₇ Polymorphs. Crystal Growth and Design, 2022, 22, 3405-3412.	3.0	2
4	Synthesis and Growth of Rare Earth Borates NaSrR(BO ₃) ₂ (R = Ho–Lu, Y, Sc). Inorganic Chemistry, 2022, 61, 7497-7505.	4.0	6
5	Metastable structures of CaCO ₃ and their role in transformation of calcite to aragonite and postaragonite. Crystal Growth and Design, 2021, 21, 65-74.	3.0	16
6	Phase Relations in the Ni–S System at High Pressures from ab Initio Computations. ACS Earth and Space Chemistry, 2021, 5, 596-603.	2.7	2
7	Formation of Mg-Orthocarbonate through the Reaction MgCO ₃ + MgO = Mg ₂ CO ₄ at Earth's Lower Mantle <i>P</i> – <i>T</i> Conditions. Crystal Growth and Design, 2021, 21, 2986-2992.	3.0	19
8	Experimental and Ab Initio Investigation of the Formation of Phosphoran Olivine. ACS Earth and Space Chemistry, 2021, 5, 1373-1383.	2.7	0
9	Stability of Ca ₂ CO ₄ - <i>Pnma</i> against the Main Mantle Minerals from Ab Initio Computations. ACS Earth and Space Chemistry, 2021, 5, 1709-1715.	2.7	14
10	Orthocarbonates of Ca, Sr, and Ba—The Appearance of sp ³ -Hybridized Carbon at a Low Pressure of 5 GPa and Dynamic Stability at Ambient Pressure. ACS Earth and Space Chemistry, 2021, 5, 1948-1957.	2.7	18
11	Phase Relations in CaSiO3 System up to 100 GPa and 2500 K. Geochemistry International, 2021, 59, 791-800.	0.7	2
12	First-Principles investigation of Pressure-Induced structural transformations of barium borates in the range of 0–10 GPa. Computational Materials Science, 2021, 199, 110735.	3.0	5
13	Phase relations, and mechanical and electronic properties of nickel borides, carbides, and nitrides from <i>ab initio</i> calculations. RSC Advances, 2021, 11, 33781-33787.	3.6	0
14	Alkali Metal (Li, Na, and K) Orthocarbonates: Stabilization of sp ³ -Bonded Carbon at Pressures above 20 GPa. Crystal Growth and Design, 2021, 21, 6744-6751.	3.0	7
15	Disordered Aragonite: The New High-Pressure, High-Temperature Phase of CaCO3. Journal of Physical Chemistry C, 2020, 124, 26467-26473.	3.1	16
16	The search for the new superconductors in the Ni-N system. Journal of Physics: Conference Series, 2020, 1590, 012010.	0.4	1
17	Phase Stability in Nickel Phosphides at High Pressures. ACS Earth and Space Chemistry, 2020, 4, 1978-1984.	2.7	4
18	Towards the investigation of ternary compound in the Ti-Al-Zr-O system: Effect of oxygen fugacity on phase formation. Journal of the European Ceramic Society, 2020, 40, 3663-3672.	5.7	5

NURSULTAN E SAGATOV

#	ARTICLE	IF	CITATIONS
19	Calcium orthocarbonate, Ca2CO4-Pnma: A potential host for subducting carbon in the transition zone and lower mantle. Lithos, 2020, 370-371, 105637.	1.4	23
20	Phase relations in the Fe-P system at high pressures and temperatures from <i>ab initio</i> computations. High Pressure Research, 2020, 40, 235-244.	1.2	9
21	(Fe,Ni)2P allabogdanite can be an ambient pressure phase in iron meteorites. Scientific Reports, 2020, 10, 8956.	3.3	10
22	Phase Diagrams of Iron Hydrides at Pressures of 100–400 GPa and Temperatures of 0–5000 K. JETP Letters, 2020, 111, 145-150.	1.4	10
23	Phase Relations of Iron Carbides Fe2C, Fe3C, and Fe7C3 at the Earth's Core Pressures and Temperatures. Russian Geology and Geophysics, 2020, 61, 1345-1353.	0.7	6
24	High-Pressure Phase Diagrams of Na2CO3 and K2CO3. Minerals (Basel, Switzerland), 2019, 9, 599.	2.0	11
25	New high-pressure phases of Fe7N3 and Fe7C3 stable at Earth's core conditions: evidences for carbon–nitrogen isomorphism in Fe-compounds. RSC Advances, 2019, 9, 3577-3581.	3.6	15
26	Temperature induced twinning in aragonite: transmission electron microscopy experiments and <i>ab initio</i> calculations. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 79-84.	0.8	4
27	Structure and Properties of New High-Pressure Phases of Fe7N3. JETP Letters, 2018, 107, 379-383.	1.4	5
28	Fe–N System at High Pressures and Its Relevance to the Earth's Core Composition. Crystal Growth and Design, 0, , .	3.0	2
29	High-Pressure Synthesis and Ambient-Pressure Tem Investigation of Mg-Orthocarbonate. SSRN Electronic Journal, 0, , .	0.4	3
30	Ba ₃ (BO ₃) ₂ : the first example of the dynamic disordering in borate	2.8	0

crystal. Physical Chemistry Chemical Physics, 0, , .