Jiri Macas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7577901/publications.pdf

Version: 2024-02-01

		28274	49909
124	9,003	55	87
papers	citations	h-index	g-index
129	129	129	5773
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Fine structure and transcription dynamics of bread wheat ribosomal DNA loci deciphered by a multiâ€omics approach. Plant Genome, 2022, , e20191.	2.8	10
2	The ecology of palm genomes: repeatâ€associated genome size expansion is constrained by aridity. New Phytologist, 2022, 236, 433-446.	7.3	10
3	Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus <i>Cuscuta</i> . New Phytologist, 2021, 229, 2365-2377.	7. 3	22
4	Complex sequence organization of heterochromatin in the holocentric plant Cuscuta europaea elucidated by the computational analysis of nanopore reads. Computational and Structural Biotechnology Journal, 2021, 19, 2179-2189.	4.1	9
5	Limitation of current probe design for oligo-cross-FISH, exemplified by chromosome evolution studies in duckweeds. Chromosoma, 2021, 130, 15-25.	2.2	9
6	Characterization of repeat arrays in ultraâ€long nanopore reads reveals frequent origin of satellite DNA from retrotransposonâ€derived tandem repeats. Plant Journal, 2020, 101, 484-500.	5.7	76
7	Mitotic Spindle Attachment to the Holocentric Chromosomes of Cuscuta europaea Does Not Correlate With the Distribution of CENH3 Chromatin. Frontiers in Plant Science, 2020, 10, 1799.	3.6	37
8	Repeat-sequence turnover shifts fundamentally in species with large genomes. Nature Plants, 2020, 6, 1325-1329.	9.3	87
9	Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nature Protocols, 2020, 15, 3745-3776.	12.0	144
10	Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries. Scientific Reports, 2020, 10, 19230.	3.3	23
11	Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture. International Journal of Molecular Sciences, 2020, 21, 3488.	4.1	42
12	Pisum sativum (Pea). Trends in Genetics, 2020, 36, 312-313.	6.7	5
13	Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae. Molecular Biology and Evolution, 2020, 37, 2341-2356.	8.9	42
14	Differential Genome Size and Repetitive DNA Evolution in Diploid Species of Melampodium sect. Melampodium (Asteraceae). Frontiers in Plant Science, 2020, 11, 362.	3.6	37
15	The Repetitive Content in Lupin Genomes. Compendium of Plant Genomes, 2020, , 161-186.	0.5	2
16	A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51, 1411-1422.	21.4	363
17	The Dark Matter of Large Cereal Genomes: Long Tandem Repeats. International Journal of Molecular Sciences, 2019, 20, 2483.	4.1	19
18	Accessing a Russian Wheat Aphid Resistance Gene in Bread Wheat by Longâ€Read Technologies. Plant Genome, 2019, 12, 180065.	2.8	15

#	Article	IF	CITATIONS
19	Genome invasion by a hypomethylated satellite repeat in Australian crucifer Ballantinia antipoda. Plant Journal, 2019, 99, 1066-1079.	5.7	3
20	Nondisjunction and unequal spindle organization accompany the drive of <i>Aegilops speltoides</i> B chromosomes. New Phytologist, 2019, 223, 1340-1352.	7.3	26
21	Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA, 2019, 10, 1.	3.6	265
22	Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Scientific Reports, 2018, 8, 5838.	3. 3	66
23	Dating the Species Network: Allopolyploidy and Repetitive DNA Evolution in American Daisies (Melampodium sect. Melampodium, Asteraceae). Systematic Biology, 2018, 67, 1010-1024.	5.6	54
24	TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Research, 2017, 45, e111-e111.	14.5	222
25	Karyotypes and Distribution of Tandem Repeat Sequences in <i>Brassica nigra</i> Determined by Fluorescence in situ Hybridization. Cytogenetic and Genome Research, 2017, 152, 158-165.	1.1	10
26	Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Chromosoma, 2017, 126, 325-335.	2.2	59
27	Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes. Frontiers in Plant Science, 2016, 7, 234.	3.6	31
28	Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta) Tj ETQq0	0 g.rgBT /	Overlock 10
29	<i>Plantago lagopus </i> B Chromosome Is Enriched in 5S rDNA-Derived Satellite DNA. Cytogenetic and Genome Research, 2016, 148, 68-73.	1.1	20
30	Haplotype Detection from Next-Generation Sequencing in High-Ploidy-Level Species: 45S rDNA Gene Copies in the Hexaploid Spartina maritima. G3: Genes, Genomes, Genetics, 2016, 6, 29-40.	1.8	29
31	Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus <i>Genlisea</i> . Plant Journal, 2015, 84, 1087-1099.	5.7	41
32	Analysis of the giant genomes of <i><scp>F</scp>ritillaria</i> (<scp>L</scp> iliaceae) indicates that a lack of <scp>DNA</scp> removal characterizes extreme expansions in genome size. New Phytologist, 2015, 208, 596-607.	7.3	122
33	Comparative Genome Analysis Reveals Divergent Genome Size Evolution in a Carnivorous Plant Genus. Plant Genome, 2015, 8, eplantgenome2015.04.0021.	2.8	45
34	Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences. Frontiers in Plant Science, 2015, 6, 613.	3.6	5
35	Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of <i>CenH3</i> Gene in <i>Fabeae</i> Species. Molecular Biology and Evolution, 2015, 32, 1862-1879.	8.9	69
36	A Set of Cytogenetic Markers Allows the Precise Identification of All A-Genome Chromosomes in Diploid and Polyploid Wheat. Cytogenetic and Genome Research, 2015, 146, 71-79.	1.1	69

#	Article	IF	Citations
37	Holocentromeres in <i>Rhynchospora</i> are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13633-13638.	7.1	96
38	Genomic Repeat Abundances Contain Phylogenetic Signal. Systematic Biology, 2015, 64, 112-126.	5.6	126
39	Genes on B chromosomes: Old questions revisited with new tools. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 64-70.	1.9	68
40	In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS ONE, 2015, 10, e0143424.	2.5	172
41	Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Annals of Botany, 2014, 114, 1597-1608.	2.9	58
42	Boom-Bust Turnovers of Megabase-Sized Centromeric DNA in <i>Solanum</i> Species: Rapid Evolution of DNA Sequences Associated with Centromeres Â. Plant Cell, 2014, 26, 1436-1447.	6.6	73
43	Genome-Wide Analysis of Repeat Diversity across the Family Musaceae. PLoS ONE, 2014, 9, e98918.	2.5	54
44	The holocentric species <i><scp>L</scp>uzula elegans</i> shows interplay between centromere and largeâ€scale genome organization. Plant Journal, 2013, 73, 555-565.	5.7	86
45	Diploidization and genome size change in allopolyploids is associated with differential dynamics of low―and highâ€copy sequences. Plant Journal, 2013, 74, 829-839.	5.7	112
46	Highâ€copy sequences reveal distinct evolution of the rye B chromosome. New Phytologist, 2013, 199, 550-558.	7.3	75
47	Flow Sorting and Sequencing Meadow Fescue Chromosome 4F. Plant Physiology, 2013, 163, 1323-1337.	4.8	27
48	RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics, 2013, 29, 792-793.	4.1	619
49	Contrasting Patterns of Transposable Element and Satellite Distribution on Sex Chromosomes (XY1Y2) in the Dioecious Plant Rumex acetosa. Genome Biology and Evolution, 2013, 5, 769-782.	2.5	55
50	Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains. PLoS Genetics, 2012, 8, e1002777.	3.5	127
51	Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13343-13346.	7.1	173
52	Next-Generation Sequencing Reveals the Impact of Repetitive DNA Across Phylogenetically Closely Related Genomes of Orobanchaceae. Molecular Biology and Evolution, 2012, 29, 3601-3611.	8.9	82
53	Survey Sequencing Reveals Elevated DNA Transposon Activity, Novel Elements, and Variation in Repetitive Landscapes among Vesper Bats. Genome Biology and Evolution, 2012, 4, 575-585.	2.5	38
54	Why size really matters when sequencing plant genomes. Plant Ecology and Diversity, 2012, 5, 415-425.	2.4	27

#	Article	IF	CITATIONS
55	Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution Â. Plant Cell, 2012, 24, 3559-3574.	6.6	221
56	Nondisjunction in Favor of a Chromosome: The Mechanism of Rye B Chromosome Drive during Pollen Mitosis. Plant Cell, 2012, 24, 4124-4134.	6.6	77
57	Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genomics, 2012, 13, 722.	2.8	60
58	Pea (Pisum sativum L.) in the Genomic Era. Agronomy, 2012, 2, 74-115.	3.0	172
59	Independent, Rapid and Targeted Loss of Highly Repetitive DNA in Natural and Synthetic Allopolyploids of Nicotiana tabacum. PLoS ONE, 2012, 7, e36963.	2.5	77
60	Next Generation Sequencing-Based Analysis of Repetitive DNA in the Model Dioceous Plant Silene latifolia. PLoS ONE, 2011, 6, e27335.	2.5	97
61	Organization and Evolution of Subtelomeric Satellite Repeats in the Potato Genome. G3: Genes, Genomes, Genetics, 2011, 1, 85-92.	1.8	75
62	A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons. Genetica, 2011, 139, 1543-1555.	1.1	23
63	Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mobile DNA, 2011, 2, 4.	3.6	186
64	Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Annals of Botany, 2011, 107, 255-268.	2.9	78
65	Next Generation Sequencing Reveals Genome Downsizing in Allotetraploid Nicotiana tabacum, Predominantly through the Elimination of Paternally Derived Repetitive DNAs. Molecular Biology and Evolution, 2011, 28, 2843-2854.	8.9	150
66	Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics, $2010,11,378.$	2.6	403
67	Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biology, 2010, 10, 204.	3.6	90
68	Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. Bioinformatics, 2010, 26, 2101-2108.	4.1	43
69	Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Heredity, 2009, 103, 157-167.	2.6	52
70	Hypervariable $3\hat{a} \in ^2$ UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene, 2009, 448, 198-206.	2.2	70
71	Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Research, 2008, 16, 961-976.	2.2	99
72	Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre. Molecular Genetics and Genomics, 2008, 280, 427-36.	2.1	9

#	Article	IF	Citations
73	Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biology, 2008, 8, 90.	3.6	86
74	Ogre elements — A distinct group of plant Ty3/gypsy-like retrotransposons. Gene, 2007, 390, 108-116.	2.2	55
75	Isolation and characterization of the highly repeated fraction of the banana genome. Cytogenetic and Genome Research, 2007, 119, 268-274.	1.1	22
76	Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics, 2007, 8, 427.	2.8	256
77	Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1. Plant Molecular Biology, 2007, 65, 615-626.	3.9	33
78	Chromosome analysis and sorting in Vicia sativa using flow cytometry. Biologia Plantarum, 2007, 51, 43-48.	1.9	26
79	Sequence homogenization and chromosomal localization of VicTR-B satellites differ between closely related Vicia species. Chromosoma, 2006, 115, 437-447.	2.2	35
80	Retand: a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat. Molecular Genetics and Genomics, 2006, 276, 254-263.	2.1	63
81	PRINS on Plant Chromosomes., 2006, 334, 133-140.		3
82	Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice. Molecular Biology and Evolution, 2006, 23, 2505-2520.	8.9	62
83	Significant Expansion of <i>Vicia pannonica </i> Genome Size Mediated by Amplification of a Single Type of Giant Retroelement. Genetics, 2006, 173, 1047-1056.	2.9	119
84	Loading of <i>Arabidopsis</i> Centromeric Histone CENH3 Occurs Mainly during G2 and Requires the Presence of the Histone Fold Domain. Plant Cell, 2006, 18, 2443-2451.	6.6	181
85	Chromosome Flow Sorting and Physical Mapping. , 2005, , 151-171.		6
86	PIGY, a new plant envelope-class LTR retrotransposon. Molecular Genetics and Genomics, 2005, 273, 43-53.	2.1	19
87	Sobo, a Recently Amplified Satellite Repeat of Potato, and Its Implications for the Origin of Tandemly Repeated Sequences. Genetics, 2005, 170, 1231-1238.	2.9	71
88	Characterization of Stowaway MITEs in pea (Pisum sativum L.) and identification of their potential master elements. Genome, 2005, 48, 831-839.	2.0	24
89	Long-range organization of plant satellite repeats investigated using strand-specific FISH. Cytogenetic and Genome Research, 2005, 109, 58-62.	1.1	6
90	Flow cytogenetics and plant genome mapping. Chromosome Research, 2004, 12, 77-91.	2.2	65

#	Article	IF	Citations
91	Development of a composite map in Vicia faba, breeding applications and future prospects. Theoretical and Applied Genetics, 2004, 108, 1079-1088.	3.6	58
92	Multicolor FISH mapping of the dioecious model plant, Silene latifolia. Theoretical and Applied Genetics, 2004, 108, 1193-1199.	3.6	66
93	Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Molecular Biology, 2003, 53, 399-410.	3.9	92
94	Sequence subfamilies of satellite repeats related to rDNA intergenic spacer are differentially amplified on Vicia sativa chromosomes. Chromosoma, 2003, 112, 152-158.	2.2	51
95	Zaba: a novel miniature transposable element present in genomes of legume plants. Molecular Genetics and Genomics, 2003, 269, 624-631.	2.1	14
96	Karyotype Analysis of Four Vicia Species using In Situ Hybridization with Repetitive Sequences. Annals of Botany, 2003, 91, 921-926.	2.9	61
97	PlantSat: a specialized database for plant satellite repeats. Bioinformatics, 2002, 18, 28-35.	4.1	118
98	Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosome Research, 2002, 10, 63-71.	2.2	69
99	Development and Characterization of Microsatellite Markers from Chromosome 1-Specific DNA Libraries of Vicia Faba. Biologia Plantarum, 2002, 45, 337-345.	1.9	87
100	Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome, 2001, 44, 716-728.	2.0	46
101	Sorting of plant chromosomes. Methods in Cell Biology, 2001, 64, 3-31.	1.1	18
102	Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Molecular Biology, 2001, 45, 229-244.	3.9	37
103	Molecular and cytogenetic analysis of repetitive DNA in pea (<i>Pisum sativum</i> L.). Genome, 2001, 44, 716-728.	2.0	28
104	Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR. Molecular Genetics and Genomics, 2000, 263, 741-751.	2.4	49
105	Nuclear Dynamics in <i>Arabidopsis thaliana</i> . Molecular Biology of the Cell, 2000, 11, 2733-2741.	2.1	124
106	Cloning and Characterization of New Repetitive Sequences in Field Bean (Vicia faba L.). Annals of Botany, 2000, 85, 157.	2.9	0
107	Development of a genetic composite map of Vicia faba using F2 populations derived from trisomic plants. Theoretical and Applied Genetics, 1999, 98, 736-743.	3.6	54
108	The Agrobacterium tumefaciens C58-6b gene confers resistance to N 6 -benzyladenine without modifying cytokinin metabolism in tobacco seedlings. Planta, 1999, 209, 453-461.	3.2	14

#	Article	IF	CITATIONS
109	Cloning and Characterization of New Repetitive Sequences in Field Bean (Vicia fabaL.). Annals of Botany, 1999, 83, 535-541.	2.9	21
110	Green Fluorescent Protein Targeted to the Nucleus, a Transgenic Phenotype Useful for Studies in Plant Biology. Annals of Botany, 1999, 83, 645-654.	2.9	79
111	Flow Analysis and Sorting of Plant Chromosomes. Current Protocols in Cytometry, 1999, 9, Unit 5.3.	3.7	3
112	Analysis of T-DNA-mediated translational beta-glucuronidase gene fusions. Plant Molecular Biology, 1998, 36, 205-217.	3.9	8
113	A combined PRINS-FISH technique for simultaneous localisation of DNA sequences on plant chromosomes. Biologia Plantarum, 1998, 41, 293-296.	1.9	5
114	Nuclear expressed sequence tag (NEST) analysis: A novel means to study transcription through amplification of nuclear RNA. Cytometry, 1998, 33, 460-468.	1.8	20
115	Isolation of chromosomes from Pisum sativum L. hairy root cultures and their analysis by flow cytometry. Plant Science, 1998, 137, 205-215.	3.6	40
116	Subtraction with $3\hat{a}\in^2$ Modified Oligonucleotides Eliminates Amplification Artifacts in DNA Libraries Enriched for Microsatellites. BioTechniques, 1998, 25, 32-38.	1.8	50
117	Analysis of Nuclear DNA Content and Ploidy in Higher Plants. Current Protocols in Cytometry, 1997, 2, Unit 7.6.	3.7	46
118	Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theoretical and Applied Genetics, 1997, 94, 758-763.	3.6	62
119	Construction of chromosome-specific DNA libraries covering the whole genome of field bean (Vicia) Tj ETQq $1\ 1\ 0$.784314 r 2.2	gBT/Overlo
120	Primed in situ labelling facilitates flow sorting of similar sized chromosomes. Plant Journal, 1995, 7, 1039-1044.	5.7	44
121	The effect of an elevated cytokinin level using the ipt gene and N 6-benzyladenine on single node and intact potato plant tuberization in vitro. Journal of Plant Growth Regulation, 1995, 14, 143-150.	5.1	32
122	Genetics of sex determination in flowering plants. Genesis, 1994, 15, 214-230.	2.1	142
123	Localization of seed protein genes on flow-sorted field bean chromosomes. Chromosome Research, 1993, 1, 107-115.	2.2	76
124	Localization of vicilin genes via polymerase chain reaction on microisolated field bean chromosomes. Plant Journal, 1993, 3, 883-886.	5.7	28