
William Allan Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7577738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Short-chain fatty acid butyrate, a breast milk metabolite, enhances immature intestinal barrier function genes in response to inflammation in vitro and in vivo. American Journal of Physiology - Renal Physiology, 2021, 320, G521-G530.	1.6	50
2	The impact of indole-3-lactic acid on immature intestinal innate immunity and development: a transcriptomic analysis. Scientific Reports, 2021, 11, 8088.	1.6	22
3	Short chain fatty acids produced by colonizing intestinal commensal bacterial interaction with expressed breast milk are anti-inflammatory in human immature enterocytes. PLoS ONE, 2020, 15, e0229283.	1.1	56
4	Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatric Research, 2020, 88, 209-217.	1.1	145
5	Breast Milk and Microbiota in the Premature Gut: A Method of Preventing Necrotizing Enterocolitis. Nestle Nutrition Institute Workshop Series, 2020, 94, 103-112.	1.5	7
6	The developmentally regulated fetal enterocyte gene, <i>ZP4</i> , mediates anti-inflammation by the symbiotic bacterial surface factor polysaccharide A on <i>Bacteroides fragilis</i> . American Journal of Physiology - Renal Physiology, 2019, 317, G398-G407.	1.6	8
7	Human Fetal-Derived Enterospheres Provide Insights on Intestinal Development and a Novel Model to Study Necrotizing Enterocolitis (NEC). Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 549-568.	2.3	60
8	Human fetal intestinal epithelial cells metabolize and incorporate branched chain fatty acids in a structure specific manner. Prostaglandins Leukotrienes and Essential Fatty Acids, 2017, 116, 32-39.	1.0	20
9	The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediatric Research, 2017, 82, 387-395.	1.1	120
10	Bacterial Colonization of the Newborn Gut, Immune Development, and Prevention of Disease. Nestle Nutrition Institute Workshop Series, 2017, 88, 23-34.	1.5	13
11	Hydrocortisone-induced anti-inflammatory effects in immature human enterocytes depend on the timing of exposure. American Journal of Physiology - Renal Physiology, 2016, 310, G920-G929.	1.6	7
12	Anti-inflammatory effects of Bifidobacterium longum subsp infantis secretions on fetal human enterocytes are mediated by TLR-4 receptors. American Journal of Physiology - Renal Physiology, 2016, 311, G744-G753.	1.6	39
13	Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants. Microbiome, 2016, 4, 68.	4.9	155
14	Differential Expression of the Activator Protein 1 Transcription Factor Regulates Interleukin-1ß Induction of Interleukin 6 in the Developing Enterocyte. PLoS ONE, 2016, 11, e0145184.	1.1	18
15	Longitudinal Analysis of the Premature Infant Intestinal Microbiome Prior to Necrotizing Enterocolitis: A Case-Control Study. PLoS ONE, 2015, 10, e0118632.	1.1	146
16	The very low birth weight infant microbiome and childhood health. Birth Defects Research Part C: Embryo Today Reviews, 2015, 105, 252-264.	3.6	70
17	Toll-like receptor-4 in human and mouse colonic epithelium is developmentally regulated: a possible role in necrotizing enterocolitis. Pediatric Research, 2015, 77, 416-424.	1.1	43
18	Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut. Pediatric Research, 2015, 77, 528-535.	1.1	52

WILLIAM ALLAN WALKER

#	Article	IF	CITATIONS
19	Long-chain polyunsaturated fatty acids attenuate the IL-1β-induced proinflammatory response in human fetal intestinal epithelial cells. Pediatric Research, 2015, 78, 626-633.	1.1	29
20	Breast milk, microbiota, and intestinal immune homeostasis. Pediatric Research, 2015, 77, 220-228.	1.1	236
21	Diet and host–microbial crosstalk in postnatal intestinal immune homeostasis. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 14-25.	8.2	85
22	Activation of Epidermal Growth Factor Receptor Mediates Mucin Production Stimulated by p40, a Lactobacillus rhamnosus GG-derived Protein. Journal of Biological Chemistry, 2014, 289, 20234-20244.	1.6	113
23	Conditioned medium from <i>Bifidobacteria infantis</i> protects against <i>Cronobacter sakazakii</i> -induced intestinal inflammation in newborn mice. American Journal of Physiology - Renal Physiology, 2014, 306, G779-G787.	1.6	44
24	Immunologic Factors in Human Milk and Disease Prevention in the Preterm Infant. Current Pediatrics Reports, 2013, 1, 222-228.	1.7	58
25	Initial Intestinal Colonization in the Human Infant and Immune Homeostasis. Annals of Nutrition and Metabolism, 2013, 63, 8-15.	1.0	137
26	Probiotics prevent necrotizing enterocolitis by modulating enterocyte genes that regulate innate immune-mediated inflammation. American Journal of Physiology - Renal Physiology, 2013, 304, G132-G141.	1.6	126
27	Arachidonic acid and Docosahexaenoic acid attenuate inflammation in human fetal but not adult intestinal epithelial cells. FASEB Journal, 2013, 27, 45.2.	0.2	0
28	Necrotizing Enterocolitis. New England Journal of Medicine, 2011, 364, 255-264.	13.9	1,707
29	The Mechanism of Excessive Intestinal Inflammation in Necrotizing Enterocolitis: An Immature Innate Immune Response. PLoS ONE, 2011, 6, e17776.	1.1	287
30	Probiotics in the Prevention of Necrotizing Enterocolitis. Journal of Clinical Gastroenterology, 2011, 45, S133-S138.	1.1	54
31	Mead Johnson Symposium: Functional Proteins in Human Milk: RoleÂinÂInfant Health and Development. Journal of Pediatrics, 2010, 156, S1-S2.	0.9	3
32	State of Research in Pediatric Gastroenterology, Hepatology, and Nutrition: 2010 and Beyond. Gastroenterology, 2010, 138, 411-416.e2.	0.6	6
33	Functional foods for health promotion: microbes and health†Extended abstracts from the 11th Annual Conference on Functional Foods for Health Promotion, April 2008. Nutrition Reviews, 2009, 67, 40-48.	2.6	9
34	Mechanisms of Action of Probiotics. Clinical Infectious Diseases, 2008, 46, S87-S91.	2.9	188
35	Immunology section. Current Opinion in Gastroenterology, 2008, 24, 698-700.	1.0	0
36	State of Pediatric Gastroenterology, Hepatology, and Nutrition: 2006 and Beyond. Gastroenterology, 2007, 132, 434-436.	0.6	3

WILLIAM ALLAN WALKER

#	Article	IF	CITATIONS
37	Salmonella typhimurium bind specific glycoconjugate receptors on human intestinal epithelium during infection. FASEB Journal, 2007, 21, A587.	0.2	0
38	Progress in the science of probiotics: from cellular microbiology and applied immunology to clinical nutrition. European Journal of Nutrition, 2006, 45, 1-18.	1.8	56
39	Opportunities in Pediatric IBD Research. Journal of Pediatric Gastroenterology and Nutrition, 2005, 40, S4.	0.9	0
40	Glucocorticoid responsiveness in developing human intestine: possible role in prevention of necrotizing enterocolitis. American Journal of Physiology - Renal Physiology, 2005, 288, G85-G92.	1.6	68
41	Symposium Introduction: Nutrition and Gene Regulation. Journal of Nutrition, 2004, 134, 2434S-2436S.	1.3	17
42	Developmentally regulated IÂB expression in intestinal epithelium and susceptibility to flagellin-induced inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7404-7408.	3.3	203
43	The Dynamic Effects of Breastfeeding on Intestinal Development and Host Defense. Advances in Experimental Medicine and Biology, 2004, 554, 155-170.	0.8	44
44	Modulation of Human Intestinal Epithelial Cell IL-8 Secretion by Human Milk Factors. Pediatric Research, 2003, 53, 419-425.	1.1	134
45	Innovative Teaching Strategies for Training Physicians in Clinical Nutrition: An Overview. Journal of Nutrition, 2003, 133, 541S-543S.	1.3	26
46	Development of the Intestinal Mucosal Barrier. Journal of Pediatric Gastroenterology and Nutrition, 2002, 34, S33-S39.	0.9	68
47	Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. American Journal of Clinical Nutrition, 2001, 73, 1124S-1130S.	2.2	246
48	Evidence for an Innate Immune Response in the Immature Human Intestine: Toll-Like Receptors on Fetal Enterocytes. Pediatric Research, 2001, 49, 589-593.	1.1	180
49	Hypothesis: inappropriate colonization of the premature intestine can cause neonatal necrotizing enterocolitis. FASEB Journal, 2001, 15, 1398-1403.	0.2	378
50	Exogenous Nucleotides Alter the Proliferation, Differentiation and Apoptosis of Human Small Intestinal Epithelium. Journal of Nutrition, 1996, 126, 424-433.	1.3	49
51	Nucleotides and Nutrition: Role as Dietary Supplement. Journal of Nutrition, 1994, 124, 121S-123S.	1.3	5
52	Uptake of antigens: Role in gastrointestinal disease. Pediatrics International, 1994, 36, 597-610.	0.2	1
53	Uptake, Transport and Metabolism of Exogenous Nucleosides in Intestinal Epithelial Cell Cultures. Journal of Nutrition, 1994, 124, 1942-1949.	1.3	40
54	Prolactin is transported across the epithelium of the jejunum and ileum of the suckling rat. Journal of Cellular Physiology, 1989, 140, 138-149.	2.0	48

WILLIAM ALLAN WALKER

#	Article	IF	CITATIONS
55	Development of Intestinal Host Defense: An Increased Sensitivity in the Adenylate Cyclase Response to Cholera Toxin in Suckling Rats. Pediatric Research, 1989, 25, 225-227.	1.1	33
56	Changes in the Gastrointestinal Tract during Enteral or Parenteral Feeding. Nutrition Reviews, 1989, 47, 193-198.	2.6	59
57	The Effect of Short-Term Starvation on Mucosal Barrier Function in the Newborn Rabbit. Pediatric Research, 1985, 19, 727-731.	1.1	30
58	Role of the Mucosal Barrier in Toxin/Microbial Attachment to the Gastrointestinal Tract. Novartis Foundation Symposium, 1985, 112, 34-56.	1.2	8
59	Absorption of Protein and Protein Fragments in the Developing Intestine: Role in Immunologic/Allergic Reactions. Pediatrics, 1985, 75, 167-171.	1.0	33
60	The Effect of Bile Duct Obstruction on the Clearance of Circulating IgA Immune Complexes. Hepatology, 1984, 4, 96-100.	3.6	10
61	The Role of Allergen Uptake From the Gastrointestinal Tract in Allergy. Allergy and Asthma Proceedings, 1984, 5, 237-242.	1.0	0
62	INDUCTION OF (PARTIAL) SYSTEMIC TOLERANCE IN PRIMED RATS SUBJECTED TO PROLONGED ORAL ADMINISTRATION OF ANTIGEN. Annals of the New York Academy of Sciences, 1983, 409, 787-788.	1.8	3
63	Hepatobiliary Clearance of IgA Immune Complexes Formed in the Circulation. Hepatology, 1982, 2, 328S-333S.	3.6	35
64	The Liver: An Integral Part of the Enteric Mucosal Immune System. Hepatology, 1982, 2, 379S-384S.	3.6	35
65	Gastrointestinal Host Defence: Importance of Gut Closure in Control of Macromolecular Transport. Novartis Foundation Symposium, 1979, , 201-219.	1.2	22
66	Chronic Nonspecific Diarrhea: Dietary Relationships. Pediatrics, 1979, 64, 402-407.	1.0	49
67	Immunologic control of soluble protein absorption from the small intestine: a gut-surface phenomenon. American Journal of Clinical Nutrition, 1974, 27, 1434-1440.	2.2	38