R BureÅ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7577053/publications.pdf

Version: 2024-02-01

		304368	360668
86	1,451	22	35
papers	citations	h-index	g-index
88	88	88	752
00	00	00	732
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Magnetic properties of soft magnetic Fe@SiO2/ferrite composites prepared by wet/dry method. Journal of Magnetism and Magnetic Materials, 2022, 543, 168640.	1.0	22
2	Eco-friendly soft magnetic composites of iron coated by sintered ferrite via mechanofusion. Journal of Magnetism and Magnetic Materials, 2022, 543, 168627.	1.0	14
3	Modelling of tribo-chemical reactions in HiPIMS W-C:H coatings during friction in different environments. Surface and Coatings Technology, 2022, 434, 128238.	2.2	3
4	Characterization of Tetracalcium Phosphate/Monetite Biocement Modified by Magnesium Pyrophosphate. Materials, 2022, 15, 2586.	1.3	2
5	Sustainable Synthesis of Cadmium Sulfide, with Applicability in Photocatalysis, Hydrogen Production, and as an Antibacterial Agent, Using Two Mechanochemical Protocols. Nanomaterials, 2022, 12, 1250.	1.9	13
6	Tribochemistry of Transfer Layer Evolution during Friction in HiPIMS W-C and W-C:H Coatings in Humid Oxidizing and Dry Inert Atmospheres. Coatings, 2022, 12, 493.	1.2	3
7	Mechanochemistry as an Alternative Method of Green Synthesis of Silver Nanoparticles with Antibacterial Activity: A Comparative Study. Nanomaterials, 2021, 11, 1139.	1.9	23
8	Energy loss separation in NiFeMo compacts with smoothed powders according to Landgraf's and Bertotti's theories. Journal of Materials Science, 2021, 56, 12835-12844.	1.7	7
9	Barkhausen noise emission in Fe-resin soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2021, 525, 167683.	1.0	5
10	Selective room-temperature leaching of copper from mechanically activated copper smelter slag. Journal of Materials Research and Technology, 2021, 12, 2011-2025.	2.6	25
11	Analysis of Magnetic Properties of Iron-Resin-Ferrite Soft Magnetic Composite Materials. Acta Physica Polonica A, 2021, 140, 64-71.	0.2	0
12	Impact of particles surface smoothing on DC permeability of NiFeMo soft magnetic powder compacts. Journal of Magnetism and Magnetic Materials, 2021, 538, 168298.	1.0	1
13	Transfer layer evolution during friction in HIPIMS W–C coatings. Wear, 2021, 486-487, 204123.	1.5	5
14	Soft Magnetic and Mechanical Properties of FeNiCoSi _{0.25} Al _x (x = 0–1) High Entropy Alloys Prepared by Arc Melting. Materials Transactions, 2021, 62, 1597-1603.	0.4	4
15	Influence of inner demagnetizing field on energy loss in nifemo compacted powder. AIP Conference Proceedings, 2021, , .	0.3	1
16	The effect of humidity on friction behavior of hydrogenated HIPIMS W-C:H coatings. Surface and Coatings Technology, 2021, 428, 127899.	2.2	3
17	Iron Based Soft Magnetic Composite Material Prepared By Injection Molding. Powder Metallurgy Progress, 2021, 21, 10-17.	0.6	O
18	Influence of the Ferromagnetic Component on the Magnetic Properties of Polymer-Matrix Soft Magnetic Composites. Powder Metallurgy Progress, 2021, 21, 1-9.	0.6	0

#	Article	IF	Citations
19	Preparation and magnetic properties of NiFeMo powdered compacts of powder elements with smoothed surfaces. Journal of Magnetism and Magnetic Materials, 2020, 494, 165770.	1.0	14
20	Sustainable One-Step Solid-State Synthesis of Antibacterially Active Silver Nanoparticles Using Mechanochemistry. Nanomaterials, 2020, 10, 2119.	1.9	8
21	Cobalt-induced structural modulation in multiferroic Aurivillius-phase oxides. Journal of Materials Chemistry C, 2020, 8, 8466-8483.	2.7	14
22	Processing and characterization of fiber-reinforced and layered alumina - graphene composites. Journal of the European Ceramic Society, 2020, 40, 4808-4817.	2.8	10
23	Preparation and characterization of iron-based soft magnetic composites with resin bonded nano-ferrite insulation. Journal of Alloys and Compounds, 2020, 828, 154416.	2.8	30
24	Magnetic properties of selected Fe-based soft magnetic composites interpreted in terms of Jiles-Atherton model parameters. Journal of Magnetism and Magnetic Materials, 2020, 502, 166514.	1.0	25
25	Microstructure, fracture behaviour and mechanical properties of conductive alumina based composites manufactured by SPS from graphenated Al2O3 powders. Journal of the European Ceramic Society, 2020, 40, 4818-4824.	2.8	16
26	Design of Permalloy–ferrite–polymer soft magnetic composites doped by ferrite nanoparticles and visualization of magnetic domains. Bulletin of Materials Science, 2020, 43, 1.	0.8	9
27	Anhysteretic Magnetization for NiFeMo Soft Magnetic Compacted Powder. Acta Physica Polonica A, 2020, 137, 889-891.	0.2	0
28	Irreversible Permeability of Fe-Based Soft Magnetic Composites. Acta Physica Polonica A, 2020, 137, 843-845.	0.2	2
29	Influence of Ferrite and Resin Content on Inner Demagnetizing Fields of Fe-Based Composite Materials with Ferrite-Resin Insulation. Acta Physica Polonica A, 2020, 137, 846-848.	0.2	4
30	Characterization of Structure and Magnetic Properties of Warm Compacted Ni-Fe-Mo Soft Magnetic Alloy. Acta Physica Polonica A, 2020, 137, 876-878.	0.2	1
31	Study of Reversible and Irreversible Magnetization Processes Proportions of Fe-MgO Soft Magnetic Composites. Acta Physica Polonica A, 2020, 137, 879-881.	0.2	2
32	Characterization of dusts from secondary copper production. Journal of Mining and Metallurgy, Section B: Metallurgy, 2020, 56, 221-228.	0.3	10
33	Functional Properties and Microstructure Development of Micro-Nano Fe/MgO Composite. Acta Physica Polonica A, 2020, 137, 283-288.	0.2	2
34	Polyhydroxybutyrate/Chitosan 3D Scaffolds Promote In Vitro and In Vivo Chondrogenesis. Applied Biochemistry and Biotechnology, 2019, 189, 556-575.	1.4	26
35	Magnetic properties of Fe-based soft magnetic composite with insulation coating by resin bonded Ni-Zn ferrite nanofibres. Journal of Magnetism and Magnetic Materials, 2019, 485, 1-7.	1.0	37
36	Reversible and irreversible magnetization processes along DC hysteresis loops of Fe-based composite materials. Journal of Magnetism and Magnetic Materials, 2019, 483, 183-190.	1.0	14

#	Article	IF	CITATIONS
37	Analysis of Magnetic Losses and Complex Permeability in Novel Soft Magnetic Composite With Ferrite Nanofibers. IEEE Transactions on Magnetics, 2018, 54, 1-6.	1.2	22
38	Innovative ferrite nanofibres reinforced soft magnetic composite with enhanced electrical resistivity. Journal of Alloys and Compounds, 2018, 753, 219-227.	2.8	52
39	Irreversible permeability and DC losses relationship for selected soft magnetic materials. Journal Physics D: Applied Physics, 2018, 51, 395002.	1.3	9
40	Microstructure and Mechanical Properties of Fe/MgO Micro-Nano Composite for Electrotechnical Applications. Powder Metallurgy Progress, 2018, 18, 103-110.	0.6	0
41	Advances in Powder Metallurgy Soft Magnetic Composite Materials. Archives of Metallurgy and Materials, 2017, 62, 1149-1154.	0.6	12
42	A comprehensive complex permeability approach to soft magnetic bulk cores from pure or resin coated Fe and pulverized alloys at elevated temperatures. Journal of Alloys and Compounds, 2017, 695, 1998-2007.	2.8	26
43	Steinmetz law for ac magnetized iron-phenolformaldehyde resin soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2017, 424, 245-250.	1.0	45
44	Analytical expression for initial magnetization curve of Fe-based soft magnetic composite material. Journal of Magnetism and Magnetic Materials, 2017, 423, 140-144.	1.0	13
45	Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer–matrix soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2017, 426, 320-327.	1.0	37
46	Energy Losses in Composite Materials Based on Two Ferromagnets. IEEE Transactions on Magnetics, 2017, 53, 1-6.	1.2	8
47	Investigation of Magnetization Processes from the Energy Losses in Soft Magnetic Composite Materials. Acta Physica Polonica A, 2017, 131, 684-686.	0.2	3
48	Imaging of Magnetic Domain Structure in FeSi/Mn_{0.8}Zn_{0.2}Fe_2O_4 Composite using Magnetic Force Microscopy. Acta Physica Polonica A, 2017, 131, 714-716.	0.2	2
49	FeSiBAlNiMo High Entropy Alloy Prepared by Mechanical Alloying. Acta Physica Polonica A, 2017, 131, 771-773.	0.2	5
50	Microwave Sintered Fe/MgO Soft Magnetic Composite. Acta Physica Polonica A, 2017, 131, 780-782.	0.2	5
51	DC Magnetic Properties and Complex Permeability of Ni-Fe Based Composites. Acta Physica Polonica A, 2017, 131, 792-794.	0.2	2
52	Influence of Vitrovac Content on Magnetic Properties in Composite Materials Based on the Mixture of Two Ferromagnets. Acta Physica Polonica A, 2017, 131, 765-767.	0.2	1
53	The Influence of NiZnFe_2O_4 Content on Magnetic Properties of Supermalloy Type Material. Acta Physica Polonica A, 2017, 131, 813-815.	0.2	3
54	Magnetic Properties of Sintered Fe_{50}Co_{50} Powder Cores. Acta Physica Polonica A, 2017, 131, 807-809.	0.2	2

#	Article	IF	CITATIONS
55	The Preparation of Soft Magnetic Composites Based on FeSi and Ferrite Fibers. Powder Metallurgy Progress, 2016, 16, 107-116.	0.6	2
56	Organic–inorganic nanocomposite films made from polyurethane dispersions and colloidal silica particles. Composite Interfaces, 2016, 23, 157-173.	1.3	15
57	Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2016, 411, 12-17.	1.0	90
58	A Novel Composite Material Designed from FeSi Powder and Mn _{0.8} 2667888999999999	1.0	6
59	A comparison of soft magnetic composites designed from different ferromagnetic powders and phenolic resins. Chinese Journal of Chemical Engineering, 2015, 23, 736-743.	1.7	37
60	Reversible and irreversible DC magnetization processes in the frame of magnetic, thermal and electrical properties of Fe-based composite materials. Journal of Alloys and Compounds, 2015, 645, 283-289.	2.8	31
61	Chemical synthesis of nickel ferrite spinel designed as an insulating bilayer coating on ferromagnetic particles. Surface and Coatings Technology, 2015, 270, 66-76.	2.2	17
62	Dependence of demagnetizing fields in Fe-based composite materials on magnetic particle size and the resin content. Journal of Magnetism and Magnetic Materials, 2015, 388, 76-81.	1.0	39
63	Influence of the Resin Content on the Dynamic Energy Losses in Iron–Phenolphormaldehyde Resin Composites. IEEE Transactions on Magnetics, 2014, 50, 1-7.	1.2	16
64	Imaging of Magnetic Domains and Domain Walls in Spherical Fe-Si Powder Using Magnetic Force Microscopy. Acta Physica Polonica A, 2014, 126, 92-93.	0.2	2
65	Structure and Properties of Composites Based on Mixed Morphology of Ferromagnetic Particles. Acta Physica Polonica A, 2014, 126, 140-141.	0.2	2
66	Mössbauer and Magnetic Study of Fe+Vitroperm+Plastic System. Acta Physica Polonica A, 2014, 126, 148-149.	0.2	0
67	Influence of Vitroperm Content on the Energy Losses in Composite Materials Based on the Mixture of Two Ferromagnets. Acta Physica Polonica A, 2014, 126, 114-115.	0.2	3
68	Steinmetz law in iron–phenolformaldehyde resin soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2014, 353, 65-70.	1.0	30
69	A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods. Materials Chemistry and Physics, 2014, 147, 649-660.	2.0	43
70	Thermoplastic polybutadiene-based polyurethane/carbon nanofiber composites. Composites Part B: Engineering, 2014, 67, 434-440.	5.9	22
71	Characterization of composite materials based on Fe powder (core) and phenol–formaldehyde resin (shell) modified with nanometer-sized SiO2. Bulletin of Materials Science, 2014, 37, 167-177.	0.8	31
72	Complex permeability and core loss of soft magnetic Fe-based nanocrystalline powder cores. Journal of Magnetism and Magnetic Materials, 2013, 345, 77-81.	1.0	52

#	Article	IF	CITATIONS
73	Power loss separation in Fe-based composite materials. Journal of Magnetism and Magnetic Materials, 2013, 327, 146-150.	1.0	202
74	Design of novel soft magnetic composites based on Fe/resin modified with silica. Materials Letters, 2013, 101, 37-40.	1.3	54
75	Contribution to Characterization of Vitroperm Based Composites. AASRI Procedia, 2012, 3, 667-673.	0.6	O
76	Preparation, chemical and mechanical properties of microcomposite materials based on Fe powder and phenol-formaldehyde resin. Chemical Engineering Journal, 2012, 180, 343-353.	6.6	30
77	Analysis of the Complex Permeability Versus Frequency of Soft Magnetic Composites Consisting of Iron and $fm Fe_{73}m Cu_{1}{m Nb}_{3}m Si_{16}m B_{7}$. IEEE Transactions on Magnetics, 2012, 48, 1545-1548.	1.2	39
78	AC Magnetic Properties of Fe-Based Composite Materials. IEEE Transactions on Magnetics, 2010, 46, 467-470.	1.2	38
79	Wide Frequency Range AC Magnetic Properties of Fe-Based Composite Materials. Acta Physica Polonica A, 2010, 118, 759-761.	0.2	8
80	AC Magnetic Properties of Vitroperm Based Composite Materials. Acta Physica Polonica A, 2010, 118, 787-789.	0.2	4
81	Structural evaluation of brushite/gelatine coatings on graphite substrate. Surface and Coatings Technology, 2009, 203, 3754-3762.	2.2	7
82	Effect of Boron Addition on Microstructure and Properties of Sintered Fe-1.5Mo Powder Materials ISIJ International, 1997, 37, 59-64.	0.6	22
83	Direct Vacuum Sintering Behaviour of M2 High Speed Steel Powder with Copper and Graphite Additions. Powder Metallurgy, 1994, 37, 206-211.	0.9	5
84	Quantification of Carbide Distribution in PM Tool Steels with Niob Addition. Key Engineering Materials, 0, 465, 310-313.	0.4	1
85	Fe/MgO Powder Composite Sintered by Microwave Heating. , 0, , .		0
86	Microwave Annealing of Powder Metals without Sintering. , 0, , .		0