Ben C Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7577033/publications.pdf

Version: 2024-02-01

48 papers

6,393 citations

30 h-index 205818 48 g-index

58 all docs 58 docs citations

58 times ranked 7837 citing authors

#	Article	IF	CITATIONS
1	Dataâ€independent acquisitionâ€based <scp>SWATH</scp> ― <scp>MS</scp> for quantitative proteomics: a tutorial. Molecular Systems Biology, 2018, 14, e8126.	3.2	701
2	OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nature Biotechnology, 2014, 32, 219-223.	9.4	692
3	Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nature Communications, 2017, 8, 291.	5.8	423
4	diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nature Methods, 2020, 17, 1229-1236.	9.0	387
5	A repository of assays to quantify 10,000 human proteins by SWATH-MS. Scientific Data, 2014, 1, 140031.	2.4	370
6	Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nature Medicine, 2015, 21, 407-413.	15,2	358
7	Building high-quality assay libraries for targeted analysis of SWATH MS data. Nature Protocols, 2015, 10, 426-441.	5.5	319
8	Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nature Methods, 2013, 10, 1246-1253.	9.0	302
9	Quantitative variability of 342 plasma proteins in a human twin population. Molecular Systems Biology, 2015, 11, 786.	3.2	300
10	Absolute Proteome Composition and Dynamics during Dormancy and Resuscitation of Mycobacterium tuberculosis. Cell Host and Microbe, 2015, 18, 96-108.	5.1	229
11	Quantitative proteomics: challenges and opportunities in basic and applied research. Nature Protocols, 2017, 12, 1289-1294.	5.5	200
12	Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nature Methods, 2017, 14, 921-927.	9.0	189
13	TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics. Nature Methods, 2016, 13, 777-783.	9.0	173
14	Glycoproteomic Analysis of Prostate Cancer Tissues by SWATH Mass Spectrometry Discovers N-acylethanolamine Acid Amidase and Protein Tyrosine Kinase 7 as Signatures for Tumor Aggressiveness. Molecular and Cellular Proteomics, 2014, 13, 1753-1768.	2.5	165
15	mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry. Journal of Proteomics, 2015, 129, 108-120.	1.2	149
16	Inference and quantification of peptidoforms in large sample cohorts by SWATH-MS. Nature Biotechnology, 2017, 35, 781-788.	9.4	122
17	Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Review of Molecular Diagnostics, 2013, 13, 811-825.	1.5	117
18	Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation. Nature Methods, 2015, 12, 725-731.	9.0	109

#	Article	IF	CITATIONS
19	Complexâ€centric proteome profiling by <scp>SEC</scp> ― <scp>SWATH</scp> ― <scp>MS</scp> . Molecular Systems Biology, 2019, 15, e8438.	3.2	109
20	From coarse to fine: the absolute <i>Escherichia coli</i> proteome under diverse growth conditions. Molecular Systems Biology, 2021, 17, e9536.	3.2	82
21	Identification of a Set of Conserved Eukaryotic Internal Retention Time Standards for Data-independent Acquisition Mass Spectrometry. Molecular and Cellular Proteomics, 2015, 14, 2800-2813.	2.5	76
22	Elucidation of host–pathogen protein–protein interactions to uncover mechanisms of host cell rewiring. Current Opinion in Microbiology, 2017, 39, 7-15.	2.3	61
23	Diagnostics and correction of batch effects in largeâ€scale proteomic studies: a tutorial. Molecular Systems Biology, 2021, 17, e10240.	3.2	57
24	A Global Screen for Assembly State Changes of the Mitotic Proteome by SEC-SWATH-MS. Cell Systems, 2020, 10, 133-155.e6.	2.9	57
25	Serum Proteomic Profiling Reveals That Pretreatment Complement Protein Levels are Predictive of Esophageal Cancer Patient Response to Neoadjuvant Chemoradiation. Annals of Surgery, 2011, 254, 809-817.	2.1	51
26	Applications and Developments in Targeted Proteomics: From SRM to DIA/SWATH. Proteomics, 2016, 16, 2065-2067.	1.3	50
27	Systems proteomics approaches to study bacterial pathogens: application to Mycobacterium tuberculosis. Current Opinion in Microbiology, 2017, 39, 64-72.	2.3	41
28	Systematic detection of functional proteoform groups from bottom-up proteomic datasets. Nature Communications, 2021, 12, 3810.	5.8	40
29	Delayed effects of transcriptional responses in Mycobacterium tuberculosis exposed to nitric oxide suggest other mechanisms involved in survival. Scientific Reports, 2017, 7, 8208.	1.6	39
30	Range of protein detection by selected/multiple reaction monitoring mass spectrometry in an unfractionated human cell culture lysate. Proteomics, 2012, 12, 1185-1193.	1.3	37
31	Comparative analysis of mRNA and protein degradation in prostate tissues indicates high stability of proteins. Nature Communications, 2019, 10, 2524.	5.8	35
32	Complex-centric proteome profiling by SEC-SWATH-MS for the parallel detection of hundreds of protein complexes. Nature Protocols, 2020, 15, 2341-2386.	5.5	34
33	Development of a Pharmaceutical Hepatotoxicity Biomarker Panel Using a Discovery to Targeted Proteomics Approach. Molecular and Cellular Proteomics, 2012, 11, 394-410.	2.5	32
34	Integrating highly quantitative proteomics and genome-scale metabolic modeling to study pH adaptation in the human pathogen Enterococcus faecalis. Npj Systems Biology and Applications, 2016, 2, 16017.	1.4	28
35	Precise Temporal Profiling of Signaling Complexes in Primary Cells Using SWATH Mass Spectrometry. Cell Reports, 2017, 18, 3219-3226.	2.9	28
36	AP-SWATH Reveals Direct Involvement of VCP/p97 in Integrated Stress Response Signaling Through Facilitating CReP/PPP1R15B Degradation. Molecular and Cellular Proteomics, 2018, 17, 1295-1307.	2.5	26

#	Article	IF	CITATION
37	SECAT: Quantifying Protein Complex Dynamics across Cell States by Network-Centric Analysis of SEC-SWATH-MS Profiles. Cell Systems, 2020, 11, 589-607.e8.	2.9	26
38	Sequence Tagging Reveals Unexpected Modifications in Toxicoproteomics. Chemical Research in Toxicology, 2011, 24, 204-216.	1.7	25
39	Use of proteomics for the discovery of early markers of drug toxicity. Expert Opinion on Drug Metabolism and Toxicology, 2007, 3, 689-704.	1.5	23
40	In Vivo and in Vitro Proteome Analysis of Human Immunodeficiency Virus (HIV)-1-infected, Human CD4+T Cells. Molecular and Cellular Proteomics, 2017, 16, S108-S123.	2.5	18
41	The Protein Landscape of Chronic Lymphocytic Leukemia (CLL). Blood, 2021, , .	0.6	17
42	Use of SELDI MS to discover and identify potential biomarkers of toxicity in InnoMed PredTox: A multiâ€site, multiâ€compound study. Proteomics, 2010, 10, 1592-1608.	1.3	16
43	Multilayered regulation of autophagy by the Atg1 kinase orchestrates spatial and temporal control of autophagosome formation. Molecular Cell, 2021, 81, 5066-5081.e10.	4.5	13
44	Proteomics goes parallel. Nature Biotechnology, 2018, 36, 1051-1053.	9.4	11
45	System-Wide Profiling of Protein Complexes Via Size Exclusion Chromatography–Mass Spectrometry (SEC–MS). Methods in Molecular Biology, 2021, 2259, 269-294.	0.4	11
46	Expression Dysregulation as a Mediator of Fitness Costs in Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2021, 65, e0050421.	1.4	5
47	Differential Proteomics Incorporating iTRAQ Labeling and Multi-dimensional Separations. Methods in Molecular Biology, 2011, 691, 369-383.	0.4	3
48	Absolute Quantification of Toxicological Biomarkers via Mass Spectrometry. Methods in Molecular Biology, 2017, 1641, 337-348.	0.4	1