Minkee Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7576983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461, 246-249.	27.8	1,925
2	Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5, 718-723.	27.5	1,079
3	Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nature Communications, 2016, 7, 10922.	12.8	683
4	Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. Journal of Catalysis, 2010, 269, 219-228.	6.2	560
5	Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New Journal of Chemistry, 2003, 27, 73-79.	2.8	497
6	Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous and Mesoporous Materials, 2013, 166, 3-19.	4.4	420
7	Mercaptosilane-Assisted Synthesis of Metal Clusters within Zeolites and Catalytic Consequences of Encapsulation. Journal of the American Chemical Society, 2010, 132, 9129-9137.	13.7	301
8	Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness. Chemical Communications, 2003, , 1340-1341.	4.1	297
9	Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chemical Communications, 2006, , 4489.	4.1	282
10	Controlled Polymerization in Mesoporous Silica toward the Design of Organicâ [~] 'Inorganic Composite Nanoporous Materials. Journal of the American Chemical Society, 2005, 127, 1924-1932.	13.7	263
11	Hydrogen Peroxide Synthesis via Enhanced Two-Electron Oxygen Reduction Pathway on Carbon-Coated Pt Surface. Journal of Physical Chemistry C, 2014, 118, 30063-30070.	3.1	248
12	Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption. Nature Communications, 2016, 7, 12640.	12.8	215
13	Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures. Nature Communications, 2014, 5, 3370.	12.8	181
14	Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chemical Communications, 2006, , 4380.	4.1	170
15	Ordered nanoporous polymer–carbon composites. Nature Materials, 2003, 2, 473-476.	27.5	169
16	High Catalytic Activity of Palladium(II)â€Exchanged Mesoporous Sodalite and NaA Zeolite for Bulky Aryl Coupling Reactions: Reusability under Aerobic Conditions. Angewandte Chemie - International Edition, 2009, 48, 3673-3676.	13.8	148
17	Oxidation-stable amine-containing adsorbents for carbon dioxide capture. Nature Communications, 2018, 9, 726.	12.8	137
18	Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. Journal of Catalysis, 2012, 288, 115-123.	6.2	134

#	Article	IF	CITATIONS
19	2,6-Di- <i>tert-</i> butylpyridine Sorption Approach to Quantify the External Acidity in Hierarchical Zeolites. Journal of Physical Chemistry C, 2014, 118, 12266-12274.	3.1	134
20	Cooperative effects of secondary mesoporosity and acid site location in Pt/SAPO-11 on n -dodecane hydroisomerization selectivity. Journal of Catalysis, 2014, 319, 232-238.	6.2	130
21	Mesoporous carbons with KOH activated framework and their hydrogen adsorption. Journal of Materials Chemistry, 2007, 17, 4204.	6.7	127
22	Physicochemical Stabilization of Pt against Sintering for a Dehydrogenation Catalyst with High Activity, Selectivity, and Durability. ACS Catalysis, 2016, 6, 2819-2826.	11.2	116
23	An ethylenediamine-grafted Y zeolite: a highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation. Energy and Environmental Science, 2016, 9, 1803-1811.	30.8	116
24	Palladium acetate immobilized in a hierarchical MFI zeolite-supported ionic liquid: a highly active and recyclable catalyst for Suzuki reaction in water. Green Chemistry, 2009, 11, 309.	9.0	112
25	Cooperative effects of zeolite mesoporosity and defect sites on the amount and location of coke formation and its consequence in deactivation. Journal of Catalysis, 2017, 347, 222-230.	6.2	103
26	Maximizing Biojet Fuel Production from Triglyceride: Importance of the Hydrocracking Catalyst and Separate Deoxygenation/Hydrocracking Steps. ACS Catalysis, 2017, 7, 6256-6267.	11.2	92
27	Expanded Heterogeneous Suzuki–Miyaura Coupling Reactions of Aryl and Heteroaryl Chlorides under Mild Conditions. Advanced Synthesis and Catalysis, 2009, 351, 2912-2920.	4.3	85
28	Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chemistry, 2013, 15, 749.	9.0	82
29	Facile synthesis of macroporous Li4SiO4 with remarkably enhanced CO2 adsorption kinetics. Chemical Engineering Journal, 2015, 280, 132-137.	12.7	81
30	Atomistic Insights into the Stability of Pt Single-Atom Electrocatalysts. Journal of the American Chemical Society, 2020, 142, 15496-15504.	13.7	75
31	Carbon Monoxide as a Promoter of Atomically Dispersed Platinum Catalyst in Electrochemical Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 16198-16205.	13.7	74
32	The synthesis of a hierarchically porous BEA zeolite via pseudomorphic crystallization. Chemical Communications, 2009, , 2845.	4.1	73
33	Unveiling coke formation mechanism in MFI zeolites during methanol-to-hydrocarbons conversion. Journal of Catalysis, 2019, 375, 183-192.	6.2	73
34	Cyclic diquaternary ammoniums for nanocrystalline BEA, MTW and MFI zeolites with intercrystalline mesoporosity. Journal of Materials Chemistry, 2009, 19, 6713.	6.7	71
35	Lipid content in microalgae determines the quality of biocrude and Energy Return On Investment of hydrothermal liquefaction. Applied Energy, 2015, 156, 354-361.	10.1	65
36	Synthesis of magnetically separable ordered mesoporous carbons using furfuryl alcohol and cobalt nitrate in a silica template. Journal of Materials Chemistry, 2006, 16, 3409.	6.7	62

#	Article	IF	CITATIONS
37	Ethanol-based synthesis of hierarchically porous carbon using nanocrystalline beta zeolite template for high-rate electrical double layer capacitor. Carbon, 2013, 60, 175-185.	10.3	57
38	Hydrogen Spillover in Encapsulated Metal Catalysts: New Opportunities for Designing Advanced Hydroprocessing Catalysts. ChemCatChem, 2015, 7, 1048-1057.	3.7	56
39	Macroporous Silica with Thick Framework for Steamâ€Stable and Highâ€Performance Poly(ethyleneimine)/Silica CO ₂ Adsorbent. ChemSusChem, 2017, 10, 2518-2526.	6.8	53
40	Dynamic metal-polymer interaction for the design of chemoselective and long-lived hydrogenation catalysts. Science Advances, 2020, 6, eabb7369.	10.3	53
41	Quantification of Active Site Density and Turnover Frequency: From Single-Atom Metal to Nanoparticle Electrocatalysts. Jacs Au, 2021, 1, 586-597.	7.9	53
42	Cross-Linked "Poisonous―Polymer: Thermochemically Stable Catalyst Support for Tuning Chemoselectivity. ACS Catalysis, 2016, 6, 2435-2442.	11.2	52
43	Significant Roles of Carbon Pore and Surface Structure in AuPd/C Catalyst for Achieving High Chemoselectivity in Direct Hydrogen Peroxide Synthesis. ACS Sustainable Chemistry and Engineering, 2017, 5, 1208-1216.	6.7	50
44	Revisiting hydrogen spillover in Pt/LTA: Effects of physical diluents having different acid site distributions. Journal of Catalysis, 2015, 325, 26-34.	6.2	48
45	Thermal Stability Enhanced Tetraethylenepentamine/Silica Adsorbents for High Performance CO2 Capture. Industrial & Engineering Chemistry Research, 2018, 57, 4632-4639.	3.7	46
46	Structural effects of amine polymers on stability and energy efficiency of adsorbents in post-combustion CO2capture. Chemical Engineering Journal, 2021, 408, 127289.	12.7	46
47	Synergy between Zeolite Framework and Encapsulated Sulfur for Enhanced Ion-Exchange Selectivity to Radioactive Cesium. Chemistry of Materials, 2018, 30, 5777-5785.	6.7	43
48	Hierarchically micro-/mesoporous Pt/KL for alkane aromatization: Synergistic combination of high catalytic activity and suppressed hydrogenolysis. Journal of Catalysis, 2016, 340, 66-75.	6.2	41
49	Rational Design of the Polymeric Amines in Solid Adsorbents for Postcombustion Carbon Dioxide Capture. ACS Applied Materials & Interfaces, 2018, 10, 23825-23833.	8.0	41
50	Catalytic dehydration of ethanol over hierarchical ZSM-5 zeolites: studies of their acidity and porosity properties. Catalysis Science and Technology, 2016, 6, 3568-3584.	4.1	40
51	Synergistic integration of catalysis and ion-exchange for highly selective reduction of nitrate into N 2. Chemical Engineering Journal, 2016, 289, 423-432.	12.7	39
52	A mechanistic model for hydrogen activation, spillover, and its chemical reaction in a zeolite-encapsulated Pt catalyst. Physical Chemistry Chemical Physics, 2016, 18, 7035-7041.	2.8	38
53	Relationship between zeolite structure and capture capability for radioactive cesium and strontium. Journal of Hazardous Materials, 2021, 408, 124419.	12.4	36
54	Large-scale synthesis of high-quality zeolite-templated carbons without depositing external carbon layers. Chemical Engineering Journal, 2015, 280, 597-605.	12.7	34

#	Article	IF	CITATIONS
55	Unique thermal contraction of zeolite-templated carbons enabling micropore size tailoring and its effects on methane storage. Carbon, 2019, 141, 143-153.	10.3	34
56	Revisiting side-chain alkylation of toluene to styrene: Critical role of microporous structures in catalysts. Journal of Catalysis, 2019, 373, 25-36.	6.2	32
57	Effects of Fatty Acid Compositions on Heavy Oligomer Formation and Catalyst Deactivation during Deoxygenation of Triglycerides. ACS Sustainable Chemistry and Engineering, 2018, 6, 17168-17177.	6.7	29
58	Pore control of Al-based MIL-53 isomorphs for the preferential capture of ethane in an ethane/ethylene mixture. Journal of Materials Chemistry A, 2021, 9, 14593-14600.	10.3	29
59	Mesoporous polymer–silica catalysts for selective hydroxylation of phenol. Green Chemistry, 2006, 8, 144.	9.0	28
60	Single-step hydroconversion of triglycerides into biojet fuel using CO-tolerant PtRe catalyst supported on USY. Journal of Catalysis, 2019, 379, 180-190.	6.2	28
61	SO ₂ -Resistant Amine-Containing CO ₂ Adsorbent with a Surface Protection Layer. ACS Applied Materials & Interfaces, 2019, 11, 16586-16593.	8.0	28
62	Catalytic Interplay of Ga, Pt, and Ce on the Alumina Surface Enabling High Activity, Selectivity, and Stability in Propane Dehydrogenation. ACS Catalysis, 2021, 11, 10767-10777.	11.2	28
63	Complete degradation of perchlorate using Pd/N-doped activated carbon with adsorption/catalysis bifunctional roles. Carbon, 2013, 65, 315-323.	10.3	27
64	Synergistic Integration of Ion-Exchange and Catalytic Reduction for Complete Decomposition of Perchlorate in Waste Water. Environmental Science & Technology, 2014, 48, 7503-7510.	10.0	27
65	CrAPO-5 catalysts having a hierarchical pore structure for the selective oxidation of tetralin to 1-tetralone. New Journal of Chemistry, 2010, 34, 2971.	2.8	26
66	Controlled decationization of X zeolite: mesopore generation within zeolite crystallites for bulky molecular adsorption and transformation. Journal of Materials Chemistry A, 2013, 1, 12096.	10.3	25
67	Comprehensive Understanding of the Effects of Carbon Nanostructures on Redox Catalytic Properties and Stability in Oxidative Dehydrogenation. ACS Catalysis, 2017, 7, 5257-5267.	11.2	24
68	Selective Dissociation of Dihydrogen over Dioxygen on a Hindered Platinum Surface for the Direct Synthesis of Hydrogen Peroxide. ChemCatChem, 2014, 6, 2836-2842.	3.7	23
69	Effects of Fatty Acid Structures on Ketonization Selectivity and Catalyst Deactivation. ACS Sustainable Chemistry and Engineering, 2018, 6, 13035-13044.	6.7	23
70	Controlled Synthesis of Metal–Organic Frameworks in Scalable Open-Porous Contactor for Maximizing Carbon Capture Efficiency. Jacs Au, 2021, 1, 1198-1207.	7.9	23
71	Effects of secondary mesoporosity and zeolite crystallinity on catalyst deactivation of ZSM-5 in propanal conversion. Microporous and Mesoporous Materials, 2017, 245, 16-23.	4.4	21
72	Tailoring a Dynamic Metal–Polymer Interaction to Improve Catalyst Selectivity and Longevity in Hydrogenation. Angewandte Chemie - International Edition, 2021, 60, 12482-12489.	13.8	19

#	Article	IF	CITATIONS
73	Hydrothermal deoxygenation of triglycerides over carbon-supported bimetallic PtRe catalysts without an external hydrogen source. Molecular Catalysis, 2019, 474, 110419.	2.0	18
74	Scalable synthesis of zeolite-templated ordered microporous carbons without external carbon deposition for capacitive energy storage. Microporous and Mesoporous Materials, 2020, 307, 110481.	4.4	18
75	Size Tunable Zeoliteâ€Templated Carbon as Microporous Sulfur Host for Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 558-565.	3.4	17
76	The facet effect of ceria nanoparticles on platinum dispersion and catalytic activity of methanol partial oxidation. Chemical Communications, 2021, 57, 7382-7385.	4.1	16
77	Sulfur-modified zeolite A as a low-cost strontium remover with improved selectivity for radioactive strontium. Chemosphere, 2022, 299, 134309.	8.2	16
78	Optimum Utilization of Biochemical Components in <i>Chlorella</i> sp. KR1 via Subcritical Hydrothermal Liquefaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 7240-7248.	6.7	15
79	Gradual Disordering of LTA Zeolite for Continuous Tuning of the Molecular Sieving Effect. Journal of Physical Chemistry C, 2017, 121, 6807-6812.	3.1	14
80	Hydrogen spillover in nonreducible oxides: Mechanism and catalytic utilization. Nano Research, 2022, 15, 10357-10365.	10.4	14
81	Epoxide-Functionalized, Poly(ethylenimine)-Confined Silica/Polymer Module Affording Sustainable CO ₂ Capture in Rapid Thermal Swing Adsorption. Industrial & Engineering Chemistry Research, 2018, 57, 13923-13931.	3.7	11
82	Alumina-coated ordered mesoporous silica as an efficient and stable water adsorbent for adsorption heat pump. Microporous and Mesoporous Materials, 2017, 239, 310-315.	4.4	9
83	Versatile post-synthetic Sn incorporation into hierarchically porous BEA zeolite for glucose isomerization in 1-butanol. Microporous and Mesoporous Materials, 2020, 307, 110524.	4.4	9
84	Coproduction of Value-Added Lube Base Oil and Green Diesel from Natural Triglycerides via a Simple Two-Step Process. Industrial & Engineering Chemistry Research, 2020, 59, 8946-8954.	3.7	8
85	Breaking the inverse relationship between catalytic activity and selectivity in acetylene partial hydrogenation using dynamic metal–polymer interaction. Journal of Catalysis, 2021, 404, 716-725.	6.2	8
86	Hierarchical BEA Zeolite with Trimodal Micro-/Meso-/Macroporosity as a Selective and Long-Lived Catalyst for Isobutane/2-Butene Alkylation. ACS Catalysis, 2022, 12, 4067-4077.	11.2	8
87	Operation of bio-aviation fuel manufacturing facility via hydroprocessed esters and fatty acids process and optimization of fuel property for turbine engine test. Korean Journal of Chemical Engineering, 2021, 38, 1205-1223.	2.7	7
88	Cation Effects of Phosphate Additives for Enhancing the Oxidative Stability of Amine-Containing CO ₂ Adsorbents. Industrial & Engineering Chemistry Research, 2021, 60, 6147-6152.	3.7	5
89	Removal of malachite green (MG) from aqueous solutions by adsorption, precipitation, and alkaline fading using talc: kinetic, thermodynamic, and column feasibility studies. Desalination and Water Treatment, 2015, 56, 1918-1928.	1.0	4
90	Synergistic interactions between water and the metal/oxide interface in CO oxidation on Pt/CeO2 model catalysts. Catalysis Today, 2022, , .	4.4	3

Minkee Choi

#	Article	IF	CITATIONS
91	Synthesis of ordered nanoporous carbons using mesoporous template and their perspectives. , 0, , .		0
92	Structural Characterization of Nanosheet-type MFI Zeolite. Nihon Kessho Gakkaishi, 2011, 53, 135-140.	0.0	0
93	Tailoring a Dynamic Metal–Polymer Interaction to Improve Catalyst Selectivity and Longevity in Hydrogenation. Angewandte Chemie, 2021, 133, 12590-12597.	2.0	0