List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7576938/publications.pdf Version: 2024-02-01

Μληζητι Κε

#	Article	IF	CITATIONS
1	Topological dislocation modes in three-dimensional acoustic topological insulators. Nature Communications, 2022, 13, 508.	12.8	40
2	Acoustic Subwavelength Manipulation of Particles with a Quasiperiodic Plate. Physical Review Applied, 2022, 17, .	3.8	5
3	Experimental Observation of Non-Abelian Earring Nodal Links in Phononic Crystals. Physical Review Letters, 2022, 128, .	7.8	22
4	Metafluids beyond the Bulk Modulus. Physical Review Letters, 2020, 125, 185502.	7.8	4
5	Acoustic Realization of Quadrupole Topological Insulators. Physical Review Letters, 2020, 124, 206601.	7.8	160
6	Valley-locked waveguide transport in acoustic heterostructures. Nature Communications, 2020, 11, 3000.	12.8	84
7	Symmetry-enforced three-dimensional Dirac phononic crystals. Light: Science and Applications, 2020, 9, 38.	16.6	38
8	Observation of quadratic Weyl points and double-helicoid arcs. Nature Communications, 2020, 11, 1820.	12.8	50
9	Straight nodal lines and waterslide surface states observed in acoustic metacrystals. Physical Review B, 2019, 100, .	3.2	18
10	Acoustic waves splitter employing orbital angular momentum. Applied Physics Letters, 2019, 114, .	3.3	14
11	Acoustic Landau quantization and quantum-Hall-like edge states. Nature Physics, 2019, 15, 352-356.	16.7	84
12	Probing Weyl Physics with One-Dimensional Sonic Crystals. Physical Review Letters, 2019, 122, 136802.	7.8	48
13	Realization of acoustic omnidirectional radiation with annular anisotropic zero-density metamaterial. Applied Physics Letters, 2019, 114, .	3.3	5
14	Superscattering of Sound by a Deep-Subwavelength Solid Mazelike Rod. Physical Review Applied, 2019, 12, .	3.8	10
15	Valley-projected edge modes observed in underwater sonic crystals. Applied Physics Letters, 2019, 114, .	3.3	37
16	Acoustic Dirac degeneracy and topological phase transitions realized by rotating scatterers. Journal of Applied Physics, 2018, 123, .	2.5	41
17	Rigorous Analytical Model for Multipole Emission Enhancement Using Acoustic Metamaterials. Physical Review Applied, 2018, 10, .	3.8	13
18	Planar Ultrasonic Lenses Formed by Concentric Circular Sandwichedâ€Ring Arrays. Advanced Materials Technologies, 2018, 4, 1800542.	5.8	7

#	Article	IF	CITATIONS
19	Realizing robust overlapped effect of multiple sound sources via anisotropic zero density metamaterials. Physical Review B, 2018, 98, .	3.2	3
20	Acoustic manipulating of capsule-shaped particle assisted by phononic crystal plate. Applied Physics Letters, 2018, 112, .	3.3	16
21	Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature, 2018, 560, 61-64.	27.8	330
22	Rotational manipulation by acoustic radiation torque of high-order vortex beams generated by an artificial structured plate. Applied Physics Letters, 2018, 113, .	3.3	35
23	Extraordinary lateral beaming of sound from a square-lattice phononic crystal. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 886-889.	2.1	5
24	Highly efficient isolation of waterborne sound by an air-sealed meta-screen. AIP Advances, 2017, 7, .	1.3	8
25	Observation of topological valley transport of sound in sonic crystals. Nature Physics, 2017, 13, 369-374.	16.7	666
26	Observation of acoustic valley vortex states and valley-chirality locked beam splitting. Physical Review B, 2017, 95, .	3.2	106
27	Acoustically driven particle delivery assisted by a graded grating plate. Applied Physics Letters, 2017, 111, 031903.	3.3	15
28	Sound-mediated stable configurations for polystyrene particles. Physical Review E, 2017, 96, 052604.	2.1	9
29	Focusing of ultrasonic waves in water with a flat artificial composite plate. , 2017, , .		0
30	Focusing of ultrasonic waves in water with a flat artificial composite plate. , 2017, , .		0
31	Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Applied Physics Letters, 2016, 109, .	3.3	94
32	Making sound vortices by metasurfaces. AIP Advances, 2016, 6, .	1.3	99
33	Making acoustic half-Bessel beams with metasurfaces. Japanese Journal of Applied Physics, 2016, 55, 110302.	1.5	10
34	Valley Vortex States in Sonic Crystals. Physical Review Letters, 2016, 116, 093901.	7.8	336
35	Acoustically mediated long-range interaction among multiple spherical particles exposed to a plane standing wave. New Journal of Physics, 2016, 18, 113034.	2.9	7
36	Guiding spoof surface acoustic waves on a monolayer array of rigid cylinders in water. Journal Physics D: Applied Physics, 2016, 49, 125304.	2.8	10

#	Article	IF	CITATIONS
37	Highly asymmetric interaction forces induced by acoustic waves in coupled plate structures. Journal of Applied Physics, 2015, 118, .	2.5	7
38	Highly efficient blazed gratings based on gradient-comb-like units. Journal of Applied Physics, 2015, 118, 083106.	2.5	0
39	Theoretical Study of Large-Angle Bending Transport of Microparticles by 2D Acoustic Half-Bessel Beams. Scientific Reports, 2015, 5, 13063.	3.3	17
40	Transversal Anderson localization of sound in acoustic waveguide arrays. Journal of Physics Condensed Matter, 2015, 27, 155402.	1.8	8
41	Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits. Journal of Applied Physics, 2015, 117, .	2.5	58
42	Directional excitation of the designer surface acoustic waves. Applied Physics Letters, 2015, 106, .	3.3	18
43	Dexterous acoustic trapping and patterning of particles assisted by phononic crystal plate. Applied Physics Letters, 2015, 106, .	3.3	29
44	Subwavelength image manipulation through oblique and herringbone layered acoustic systems. Journal Physics D: Applied Physics, 2014, 47, 135102.	2.8	1
45	Broadband asymmetric acoustic transmission by a plate with quasi-periodic surface ridges. Applied Physics Letters, 2014, 105, .	3.3	37
46	Dirac cones in two-dimensional artificial crystals for classical waves. Physical Review B, 2014, 89, .	3.2	153
47	Tunable enhancement of the acoustic radiation pressure acting on a rigid wall via attaching a metamaterial slab. Europhysics Letters, 2014, 105, 64004.	2.0	14
48	Acoustically induced strong interaction between two periodically patterned elastic plates. Physical Review B, 2014, 90, .	3.2	23
49	Acoustic lens: A thin plate with quasi-periodic array of holes. Solid State Communications, 2014, 185, 35-40.	1.9	4
50	Anomalous refraction of airborne sound through ultrathin metasurfaces. Scientific Reports, 2014, 4, 6517.	3.3	299
51	Acoustic surface-guided modes in phononic crystals. Europhysics Letters, 2013, 104, 34005.	2.0	6
52	Focusing of spoof surface-acoustic-waves by a gradient-index structure. Journal of Applied Physics, 2013, 114, .	2.5	44
53	Unidirectional transmission of acoustic waves based on asymmetric excitation of Lamb waves. Applied Physics Letters, 2013, 102, .	3.3	49
54	Phononic crystal sensor for liquid property determination. , 2012, , .		9

4

#	Article	IF	CITATIONS
55	Extraordinary acoustic reflection enhancement by acoustically transparent thin plates. Applied Physics Letters, 2012, 100, .	3.3	20
56	Transmission enhancement of acoustic waves through a thin hard plate embedded with elastic inclusions. Applied Physics Letters, 2012, 101, .	3.3	31
57	Liquid sensor utilizing a regular phononic crystal with normal incidence of sound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 463-471.	3.0	36
58	Two-dimensional phononic crystal sensor based on a cavity mode. Sensors and Actuators B: Chemical, 2012, 171-172, 271-277.	7.8	122
59	Acoustic Tamm states in double 1D phononic crystals. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 374-376.	1.0	3
60	Sub-wavelength phononic crystal liquid sensor. Journal of Applied Physics, 2011, 110, .	2.5	82
61	Liquid sensor utilizing a regular phononic crystal with normal incidence of sound. , 2011, , .		1
62	Nonleaky surface acoustic waves on a textured rigid surface. Physical Review B, 2011, 83, .	3.2	47
63	Extraordinary acoustic shielding by a monolayer of periodical polymethyl methacrylate cylinders immersed in water. Journal of Applied Physics, 2011, 110, .	2.5	16
64	Asymmetric acoustic gratings. Applied Physics Letters, 2011, 98, .	3.3	90
65	Acoustic Zitterbewegung in ordinary sonic crystals: A general classical description. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 4933-4936.	2.1	2
66	Acoustic Transmission Enhancement through a Periodically Structured Stiff Plate without Any Opening. Physical Review Letters, 2010, 105, 074301.	7.8	81
67	Acoustic far-field focusing effect for two-dimensional graded negative refractive-index sonic crystals. Applied Physics Letters, 2010, 96, .	3.3	100
68	Experimental investigation of shell modes in two-dimensional phononic crystal consisting of hollow cylinders. Journal of Applied Physics, 2010, 107, 064503.	2.5	4
69	Exotic acoustic transmission through hard plates perforated with quasiperiodic subwavelength apertures. Europhysics Letters, 2010, 92, 24006.	2.0	20
70	Acoustic analog of electromagnetically induced transparency in periodic arrays of square rods. Physical Review E, 2010, 82, 026601.	2.1	52
71	Subwavelength imaging by a simple planar acoustic superlens. Applied Physics Letters, 2010, 97, .	3.3	81
72	Parallel acoustic near-field microscope: A steel slab with a periodic array of slits. Physical Review E, 2009, 80, 026603.	2.1	32

#	Article	IF	CITATIONS
73	Strongly localized acoustic surface waves propagating along a V-groove. Applied Physics Letters, 2009, 94, 023505.	3.3	15
74	Experimental demonstration of surface acoustic waves in two-dimensional phononic crystals with fluid background. Journal of Applied Physics, 2009, 106, 044512.	2.5	13
75	Acoustic collimating beams by negative refraction in two-dimensional phononic crystal. Journal of Applied Physics, 2009, 105, .	2.5	24
76	Experimental investigation of negative refraction and imaging of 8-fold-symmetry phononic quasicrystals. Solid State Communications, 2009, 149, 667-669.	1.9	12
77	Low frequency dispersion law for two-dimensional metallic photonic crystals. Wuhan University Journal of Natural Sciences, 2008, 13, 50-54.	0.4	1
78	Experimental determination for resonance-induced transmission of acoustic waves through subwavelength hole arrays. Journal of Applied Physics, 2008, 104, .	2.5	44
79	Acoustic wave transmission through a bull's eye structure. Applied Physics Letters, 2008, 92, .	3.3	54
80	Surface acoustic waves in two-dimensional phononic crystals: Dispersion relation and the eigenfield distribution of surface modes. Physical Review B, 2007, 76, .	3.2	38
81	Experimental demonstration of directional acoustic radiation based on two-dimensional phononic crystal band edge states. Applied Physics Letters, 2007, 90, 083509.	3.3	35
82	Acoustic Bloch oscillations in a two-dimensional phononic crystal. Physical Review E, 2007, 76, 056605.	2.1	33
83	Tuning Fabry-Perot resonances via diffraction evanescent waves. Physical Review B, 2007, 76, .	3.2	150
84	Surface Resonant-States-Enhanced Acoustic Wave Tunneling in Two-Dimensional Phononic Crystals. Physical Review Letters, 2007, 99, 044301.	7.8	29
85	Flat superlens by using negative refraction in two-dimensional phononic crystals. Solid State Communications, 2007, 142, 177-180.	1.9	39
86	Zener tunneling of acoustic waves in a one-dimensional phononic crystal. Solid State Communications, 2007, 144, 433-436.	1.9	2
87	Highly directional acoustic wave radiation based on asymmetrical two-dimensional phononic crystal resonant cavity. Applied Physics Letters, 2006, 88, 263505.	3.3	38
88	The layer multiple-scattering method for calculating transmission coefficients of 2D phononic crystals. Solid State Communications, 2005, 134, 765-770.	1.9	59
89	Negative-refraction imaging with two-dimensional phononic crystals. Physical Review B, 2005, 72, .	3.2	146