Dorien M Schrijvers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7576608/publications.pdf Version: 2024-02-01

DODIEN M SCHDUVEDS

#	Article	IF	CITATIONS
1	Acetylsalicylic Acid Reduces Passive Aortic Wall Stiffness and Cardiovascular Remodelling in a Mouse Model of Advanced Atherosclerosis. International Journal of Molecular Sciences, 2022, 23, 404.	4.1	2
2	Defective Autophagy in Atherosclerosis: To Die or to Senesce?. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	4.0	113
3	Long-Term Depletion of Conventional Dendritic Cells Cannot Be Maintained in an Atherosclerotic Zbtb46-DTR Mouse Model. PLoS ONE, 2017, 12, e0169608.	2.5	9
4	Caspase-3 Deletion Promotes Necrosis in Atherosclerotic Plaques of ApoE Knockout Mice. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	4.0	428
5	NecroX-7 reduces necrotic core formation in atherosclerotic plaques of Apoe knockout mice. Atherosclerosis, 2016, 252, 166-174.	0.8	17
6	A novel setâ€up for the <i>ex vivo</i> analysis of mechanical properties of mouse aortic segments stretched at physiological pressure and frequency. Journal of Physiology, 2016, 594, 6105-6115.	2.9	36
7	Angiotensin II increases coronary fibrosis, cardiac hypertrophy and the incidence of myocardial infarctions in ApoE ^{-/-} Fbn1 ^{C1039G+/-} mice. Acta Cardiologica, 2016, 71, 483-488.	0.9	2
8	Cholesterol-independent effects of atorvastatin prevent cardiovascular morbidity and mortality in a mouse model of atherosclerotic plaque rupture. Vascular Pharmacology, 2016, 80, 50-58.	2.1	31
9	Effect of angiotensin II-induced arterial hypertension on the voltage-dependent contractions of mouse arteries. Pflugers Archiv European Journal of Physiology, 2016, 468, 257-267.	2.8	17
10	Elastic and Muscular Arteries Differ in Structure, Basal NO Production and Voltage-Gated Ca2+-Channels. Frontiers in Physiology, 2015, 6, 375.	2.8	50
11	CD4+ROR <i>γ</i> t++ and Tregs in a Mouse Model of Diet-Induced Nonalcoholic Steatohepatitis. Mediators of Inflammation, 2015, 2015, 1-10.	3.0	25
12	Autophagy in Vascular Disease. Circulation Research, 2015, 116, 468-479.	4.5	236
13	Elastin fragmentation in atherosclerotic mice leads to intraplaque neovascularization, plaque rupture, myocardial infarction, stroke, and sudden death. European Heart Journal, 2015, 36, 1049-1058.	2.2	139
14	Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy, 2015, 11, 2014-2032.	9.1	229
15	Chronic intermittent mental stress promotes atherosclerotic plaque vulnerability, myocardial infarction and sudden death in mice. Atherosclerosis, 2015, 242, 288-294.	0.8	42
16	Cardiomyocytes induce macrophage receptor shedding to suppress phagocytosis. Journal of Molecular and Cellular Cardiology, 2015, 87, 171-179.	1.9	27
17	The Role of Autophagy in Atherosclerosis. , 2014, , 79-90.		0
18	Applanation Tonometry in Mice. Hypertension, 2014, 64, 195-200.	2.7	33

DORIEN M SCHRIJVERS

#	Article	IF	CITATIONS
19	Aging-Related Changes in Cell Death and Cell Survival Pathways and Implications for Heart Failure Therapy. , 2014, , 339-349.		0
20	Drug-induced macrophage autophagy in atherosclerosis: for better or worse?. Basic Research in Cardiology, 2013, 108, 321.	5.9	46
21	Immunohistochemical analysis of macroautophagy. Autophagy, 2013, 9, 386-402.	9.1	67
22	Contribution of α-Adrenoceptor Stimulation by Phenylephrine to Basal Nitric Oxide Production in the Isolated Mouse Aorta. Journal of Cardiovascular Pharmacology, 2013, 61, 318-323.	1.9	7
23	Does patient-tailored immunotherapy pave the way for new renal cell carcinoma treatment perspectives?. Translational Andrology and Urology, 2013, 2, 85-8.	1.4	0
24	Everolimus Triggers Cytokine Release by Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1228-1235.	2.4	26
25	Molecular and cellular mechanisms of macrophage survival in atherosclerosis. Basic Research in Cardiology, 2012, 107, 297.	5.9	31
26	Selective loss of basal but not receptor-stimulated relaxation by endothelial nitric oxide synthase after isolation of the mouse aorta. European Journal of Pharmacology, 2012, 696, 111-119.	3.5	22
27	Transcript and Protein Analysis Reveals Better Survival Skills of Monocyte-Derived Dendritic Cells Compared to Monocytes during Oxidative Stress. PLoS ONE, 2012, 7, e43357.	2.5	10
28	Toll-like receptor 7 stimulation by imiquimod induces macrophage autophagy and inflammation in atherosclerotic plaques. Basic Research in Cardiology, 2012, 107, 269.	5.9	54
29	Inhibition of inositol monophosphatase by lithium chloride induces selective macrophage apoptosis in atherosclerotic plaques. British Journal of Pharmacology, 2011, 162, 1410-1423.	5.4	32
30	Pharmacological modulation of cell death in atherosclerosis: a promising approach towards plaque stabilization?. British Journal of Pharmacology, 2011, 164, 1-13.	5.4	64
31	Autophagy in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2787-2791.	2.4	160
32	Necrotic cell death in atherosclerosis. Basic Research in Cardiology, 2011, 106, 749-760.	5.9	101
33	Transglutaminase 2 Deficiency Decreases Plaque Fibrosis and Increases Plaque Inflammation in Apolipoprotein-E-Deficient Mice. Journal of Vascular Research, 2010, 47, 231-240.	1.4	23
34	Phagocytosis of bacteria is enhanced in macrophages undergoing nutrient deprivation. FEBS Journal, 2009, 276, 2227-2240.	4.7	27
35	Macrophage deficiency of p38α MAPK promotes apoptosis and plaque necrosis in advanced atherosclerotic lesions in mice. Journal of Clinical Investigation, 2009, 119, 886-98.	8.2	130

Phagocytosis of Dying Cells in the Pathogenesis of Atherosclerosis. , 2009, , 371-392.

0

#	Article	IF	CITATIONS
37	Mertk Receptor Mutation Reduces Efferocytosis Efficiency and Promotes Apoptotic Cell Accumulation and Plaque Necrosis in Atherosclerotic Lesions of <i>Apoe</i> ^{â^²/â^²} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1421-1428.	2.4	300
38	Phagocytosis in atherosclerosis: Molecular mechanisms and implications for plaque progression and stability. Cardiovascular Research, 2007, 73, 470-480.	3.8	228
39	Comparison of apoptosis detection markers combined with macrophage immunostaining to study phagocytosis of apoptotic cells in situ. Biomarker Insights, 2007, 1, 193-200.	2.5	4
40	Comparison of Apoptosis Detection Markers Combined with Macrophage Immunostaining to Study Phagocytosis of Apoptotic Cells in Situ. Biomarker Insights, 2006, 1, 117727190600100.	2.5	1
41	Abstract no.: 10 DNA fragmentation, but not caspase-3 activation or PARP-1 cleavage, combined with macrophage immunostaining as a tool to study phagocytosis of apoptotic cells in situ. Fundamental and Clinical Pharmacology, 2006, 20, 333-333.	1.9	0
42	Dipeptidyl peptidase II and leukocyte cell death. Biochemical Pharmacology, 2006, 72, 70-79.	4.4	21
43	z-VAD-fmk-Induced Non-Apoptotic Cell Death of Macrophages: Possibilities and Limitations for Atherosclerotic Plaque Stabilization. Autophagy, 2006, 2, 312-314.	9.1	30
44	Abstract no.: 3 Impaired clearance of apoptotic cells in atherosclerosis. Fundamental and Clinical Pharmacology, 2005, 19, 401-401.	1.9	0
45	Phagocytosis of Apoptotic Cells by Macrophages Is Impaired in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1256-1261.	2.4	407
46	mRNA but not plasmid DNA is efficiently transfected in murine J774A.1 macrophages. Biochemical and Biophysical Research Communications, 2005, 327, 356-360.	2.1	34
47	Cytosolic prostaglandin E2 synthase/p23 but not apoptosis-linked gene 2 is downregulated in human atherosclerotic plaques. Cardiovascular Research, 2004, 61, 360-361.	3.8	0
48	7-Ketocholesterol Induces Protein Ubiquitination, Myelin Figure Formation, and Light Chain 3 Processing in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2296-2301.	2.4	120
49	Flow cytometric evaluation of a model for phagocytosis of cells undergoing apoptosis. Journal of Immunological Methods, 2004, 287, 101-108.	1.4	37
50	Nucleofection as an efficient nonviral transfection method for human monocytic cells. Biotechnology Letters, 2003, 25, 1025-1029.	2.2	49
51	Western array analysis of human atherosclerotic plaques: downregulation of apoptosis-linked gene 2. Cardiovascular Research, 2003, 60, 259-267.	3.8	35
52	Gene Expression Profiling of Apoptosis-Related Genes in Human Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 2023-2029.	2.4	69