
Stephen C Bondy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/75764/publications.pdf Version: 2024-02-01

STERHEN C RONDY

#	Article	IF	CITATIONS
1	Electronic cigarette aerosol increases the risk of organ dysfunction by enhancing oxidative stress and inflammation. Drug and Chemical Toxicology, 2022, 45, 2561-2567.	1.2	4
2	Attenuation of acute and chronic inflammation using compounds derived from plants. Experimental Biology and Medicine, 2021, 246, 406-413.	1.1	2
3	Metal toxicity and neuroinflammation. Current Opinion in Toxicology, 2021, 26, 8-13.	2.6	9
4	Can a Micronutrient Mixture Delay the Onset and Progression of Symptoms of Single-Point Mutation Diseases?. Journal of the American College of Nutrition, 2021, , 1-10.	1.1	0
5	Increased oxidative stress, inflammation, and glutamate: Potential preventive and therapeutic targets for hearing disorders. Mechanisms of Ageing and Development, 2020, 185, 111191.	2.2	45
6	Melatonin and Regulation of Immune Function: Impact on Numerous Diseases. Current Aging Science, 2020, 13, 92-101.	0.4	15
7	Alternatives to Insulin for the Regulation of Blood Sugar Levels in Type 2 Diabetes. International Journal of Molecular Sciences, 2020, 21, 8302.	1.8	4
8	Distinctive cellular response to aluminum based adjuvants. Environmental Toxicology and Pharmacology, 2020, 78, 103404.	2.0	15
9	Aspects of the immune system that impact brain function. Journal of Neuroimmunology, 2020, 340, 577167.	1.1	10
10	A paradigm shift at the heart of occupational health. Toxicology and Industrial Health, 2019, 35, 567-567.	0.6	0
11	Oxidative and Inflammatory Events in Prion Diseases: Can They Be Therapeutic Targets?. Current Aging Science, 2019, 11, 216-225.	0.4	21
12	Environmental and Dietary Exposure to Copper and Its Cellular Mechanisms Linking to Alzheimer's Disease. Toxicological Sciences, 2018, 163, 338-345.	1.4	59
13	Mechanisms Underlying Tumor Suppressive Properties of Melatonin. International Journal of Molecular Sciences, 2018, 19, 2205.	1.8	53
14	Water Quality and Brain Function. International Journal of Environmental Research and Public Health, 2018, 15, 2.	1.2	52
15	Telomere shortening during aging: Attenuation by antioxidants and anti-inflammatory agents. Mechanisms of Ageing and Development, 2017, 164, 61-66.	2.2	82
16	Exposure to ambient ultrafine particulate matter alters the expression of genes in primary human neurons. NeuroToxicology, 2017, 58, 50-57.	1.4	30
17	MicroRNAs in Hearing Disorders: Their Regulation by Oxidative Stress, Inflammation and Antioxidants. Frontiers in Cellular Neuroscience, 2017, 11, 276.	1.8	20
4.5			

STEPHEN C BONDY

#	Article	IF	CITATIONS
19	Aluminum and Neurodegenerative Diseases. Advances in Neurotoxicology, 2017, 1, 131-156.	0.7	17
20	Metal Toxicity, Inflammation and Oxidative Stress. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 3-16.	0.4	4
21	Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration. NeuroToxicology, 2016, 52, 222-229.	1.4	184
22	Anthropogenic pollutants may increase the incidence of neurodegenerative disease in an aging population. Toxicology, 2016, 341-343, 41-46.	2.0	22
23	Inhibition of Early Biochemical Defects in Prodromal Huntington's disease by Simultaneous Activation of Nrf2 and Elevation of Multiple Micronutrients. Current Aging Science, 2015, 9, 61-70.	0.4	11
24	Low concentrations of copper in drinking water increase AP-1 binding in the brain. Toxicology and Industrial Health, 2015, 31, 1178-1184.	0.6	11
25	Common biochemical defects linkage between post-traumatic stress disorders, mild traumatic brain injury (TBI) and penetrating TBI. Brain Research, 2015, 1599, 103-114.	1.1	44
26	The Fibrous Form Confers Unique Properties on Materials. Fibers, 2014, 2, 240-241.	1.8	0
27	Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology, 2014, 315, 1-7.	2.0	138
28	Inhibition of Early Upstream Events in Prodromal Alzheimer's Disease by Use of Targeted Antioxidants. Current Aging Science, 2014, 7, 77-90.	0.4	19
29	Welcome to Fibers—A New Open Access Journal for Fibrous Material Science. Fibers, 2013, 1, 1-1.	1.8	Ο
30	Can Environmentally Relevant Levels of Aluminium Promote the Onset and Progression of Neurodegenerative Diseases?. Current Inorganic Chemistry, 2012, 2, 40-45.	0.2	2
31	Nanoparticles and Colloids as Contributing Factors in Neurodegenerative Disease. International Journal of Environmental Research and Public Health, 2011, 8, 2200-2211.	1.2	13
32	Extended exposure to dietary melatonin reduces tumor number and size in aged male mice. Experimental Gerontology, 2011, 46, 18-22.	1.2	12
33	Melatonin Alters Age-Related Changes in Transcription Factors and Kinase Activation. Neurochemical Research, 2010, 35, 2035-2042.	1.6	9
34	The neurotoxicity of environmental aluminum is still an issue. NeuroToxicology, 2010, 31, 575-581.	1.4	257
35	Melatonin, Oxidative Stress, and the Aging Brain. , 2010, , 339-357.		4
36	Role of Nitric Oxide in Neurodegeneration and Vulnerability of Neuronal Cells to Nitric Oxide Metabolites and Reactive Owygen Species - 2010 - 399,415		1

Metabolites and Reactive Oxygen Species. , 2010, , 399-415.

STEPHEN C BONDY

#	Article	IF	CITATIONS
37	Melatonin Causes Gene Expression in Aged Animals to Respond to Inflammatory Stimuli in a Manner Differing from that of Young Animals. Current Aging Science, 2008, 1, 152-158.	0.4	12
38	Effects of melatonin and age on gene expression in mouse CNS using microarray analysis. Neurochemistry International, 2007, 50, 336-344.	1.9	37
39	Melatonin and the aging brain. Neurochemistry International, 2007, 50, 571-580.	1.9	44
40	Aluminum and copper in drinking water enhance inflammatory or oxidative events specifically in the brain. Journal of Neuroimmunology, 2006, 176, 16-23.	1.1	110
41	Developmental neurotoxicology. Journal of Neuroscience Research, 2005, 81, 605-612.	1.3	64
42	Parallel changes in gene expression in aged human and mouse cortex. Neuroscience Letters, 2005, 390, 4-8.	1.0	6
43	Dietary supplementation with melatonin reduces levels of amyloid beta-peptides in the murine cerebral cortex. Journal of Pineal Research, 2004, 36, 224-231.	3.4	100
44	Oxidative Basis of Manganese Neurotoxicity. Annals of the New York Academy of Sciences, 2004, 1012, 129-141.	1.8	114
45	Melatonin, Metals, and Gene Expression: Implications in Aging and Neurodegenerative Disorders. Annals of the New York Academy of Sciences, 2004, 1035, 216-230.	1.8	20
46	Ageâ€related changes in murine CNS mRNA gene expression are modulated by dietary melatonin. Journal of Pineal Research, 2004, 36, 165-170.	3.4	44
47	Age-related changes in serum melatonin in mice: higher levels of combined melatonin and 6-hydroxymelatonin sulfate in the cerebral cortex than serum, heart, liver and kidney tissues. Journal of Pineal Research, 2004, 36, 217-223.	3.4	87
48	SUPPRESSION OF HIPPOCAMPAL EPILEPTIFORM ACTIVITY IN VITRO AFTER LASER EXPOSURE. Laser Therapy, 2004, 14, 0_19-0_21.	0.8	1
49	Genetic and Toxicological Models of Neurodegenerative Diseases. , 2004, , 107-121.		Ο
50	Aluminum and copper interact in the promotion of oxidative but not inflammatory events: Implications for Alzheimer's disease. Journal of Alzheimer's Disease, 2003, 5, 31-38.	1.2	68
51	Dietary modulation of age-related changes in cerebral pro-oxidant status. Neurochemistry International, 2002, 40, 123-130.	1.9	33
52	Dietary melatonin selectively reverses age-related changes in cortical cytokine mRNA levels, and their responses to an inflammatory stimulus. Neurobiology of Aging, 2002, 23, 633-638.	1.5	42
53	Pro-inflammatory effects of aluminum in human glioblastoma cells. Brain Research, 2002, 933, 60-65.	1.1	55
54	Decrease of Glial Fibrillary Acidic Protein in Rat Frontal Cortex Following Aluminum Treatment. Journal of Neurochemistry, 2002, 73, 1609-1614.	2.1	23

STEPHEN C BONDY

#	Article	IF	CITATIONS
55	Effects of age and dietary antioxidants on cerebral electron transport chain activity. Neurobiology of Aging, 2001, 22, 629-634.	1.5	61
56	Mechanisms by which metals promote events connected to neurodegenerative diseases. Brain Research Bulletin, 2001, 55, 125-132.	1.4	97
57	Differential Toxicity of Aluminum Salts in Human Cell Lines of Neural Origin: Implications for Neurodegeneration. NeuroToxicology, 2001, 22, 63-71.	1.4	74
58	Oxidative and Inflammatory Properties of Aluminum: Possible Relevance in Alzheimer's Disease. , 2001, , 311-321.		6
59	Exposure of mice to tobacco smoke attenuates the toxic effect of methamphetamine on dopamine systems. Toxicology Letters, 2000, 118, 43-46.	0.4	5
60	The stabilization of ferrous iron by a toxic β-amyloid fragment and by an aluminum salt. Brain Research, 1999, 839, 221-226.	1.1	65
61	Aluminum-induced oxidative events in cell lines: glioma are more responsive than neuroblastoma. Free Radical Biology and Medicine, 1999, 26, 1166-1171.	1.3	79
62	Promotion of transition metal-induced reactive oxygen species formation by β-amyloid. Brain Research, 1998, 799, 91-96.	1.1	137
63	Aluminum but not iron treatment induces pro-oxidant events in the rat brain. Molecular and Chemical Neuropathology, 1998, 34, 219-232.	1.0	48
64	Elevation of cerebral proteases after systemic administration of aluminum. Neurochemistry International, 1998, 33, 277-282.	1.9	21
65	Dietary α-tocopherol content modulates responses to moderate ethanol consumption. Environmental Toxicology and Pharmacology, 1996, 1, 45-49.	2.0	5
66	The promotion of iron-induced generation of reactive oxygen species in nerve tissue by aluminum. Molecular and Chemical Neuropathology, 1996, 27, 185-194.	1.0	63
67	Ethanol-Induced Oxidative Stress and Nutritional Status. Alcoholism: Clinical and Experimental Research, 1993, 17, 651-654.	1.4	16
68	Oxidative damage and cerebral aging. Progress in Neurobiology, 1992, 38, 601-609.	2.8	70
69	Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chemical Research in Toxicology, 1992, 5, 227-231.	1.7	2,374
70	Disruption of the potential across the synaptosomal plasma membrane and mitochondria by neurotoxic agents. Toxicology Letters, 1991, 58, 13-21.	0.4	23
71	Persistent protein damage despite reduced oxygen radical formation in the aging rat brain. International Journal of Developmental Neuroscience, 1991, 9, 139-146.	0.7	38
72	Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochemistry International, 1990, 17, 435-440.	1.9	303

#	Article	IF	CITATIONS
73	SUPPRESSION OF HIPPOCAMPAL EPILEPTIFORM ACTIVITY IN VITRO AFTER LASER EXPOSURE. Laser Therapy, 1989, 1, 19-21.	0.8	7
74	Effect of triethyl lead chloride on δâ€aminolevulinic acid dehydratase. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1986, 18, 639-649.	1.1	9