Hojin Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7576065/publications.pdf Version: 2024-02-01

HOUN FONC

#	Article	IF	CITATIONS
1	Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nature Catalysis, 2020, 3, 368-375.	34.4	220
2	Fully Dispersed Rh Ensemble Catalyst To Enhance Low-Temperature Activity. Journal of the American Chemical Society, 2018, 140, 9558-9565.	13.7	170
3	Promoting Effects of Hydrothermal Treatment on the Activity and Durability of Pd/CeO ₂ Catalysts for CO Oxidation. ACS Catalysis, 2017, 7, 7097-7105.	11.2	151
4	Highly Water-Resistant La-Doped Co ₃ O ₄ Catalyst for CO Oxidation. ACS Catalysis, 2019, 9, 10093-10100.	11.2	126
5	Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 20691-20696.	13.8	113
6	Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts. ACS Nano, 2020, 14, 14355-14374.	14.6	97
7	Au-doped PtCo/C catalyst preventing Co leaching for proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2019, 247, 142-149.	20.2	76
8	Facet-Dependent Mn Doping on Shaped Co ₃ O ₄ Crystals for Catalytic Oxidation. ACS Catalysis, 2021, 11, 11066-11074.	11.2	69
9	Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy and Environmental Science, 2020, 13, 4921-4929.	30.8	61
10	Selective hydrogenation of furanic aldehydes using Ni nanoparticle catalysts capped with organic molecules. Journal of Catalysis, 2016, 344, 609-615.	6.2	39
11	Lean NOx trap catalysts with high low-temperature activity and hydrothermal stability. Applied Catalysis B: Environmental, 2020, 270, 118871.	20.2	29
12	Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. Angewandte Chemie, 2020, 132, 20872-20877.	2.0	28
13	Synergistic Effect of Cu/CeO ₂ and Pt–BaO/CeO ₂ Catalysts for a Low-Temperature Lean NO _{<i>x</i>} Trap. Environmental Science & Technology, 2019, 53, 2900-2907.	10.0	26
14	CO oxidation on SnO ₂ surfaces enhanced by metal doping. Catalysis Science and Technology, 2018, 8, 782-789.	4.1	25
15	Design of an Ultrastable and Highly Active Ceria Catalyst for CO Oxidation by Rare-Earth- and Transition-Metal Co-Doping. ACS Catalysis, 2020, 10, 14877-14886.	11.2	23
16	Surface Restructuring of Supported Nano-Ceria for Improving Sulfur Resistance. ACS Catalysis, 2021, 11, 7154-7159.	11.2	23
17	Oxidative Methane Conversion to Ethane on Highly Oxidized Pd/CeO ₂ Catalysts Below 400 °C. ChemSusChem, 2020, 13, 677-681.	6.8	16
18	Mn-doped CuO Co3O4CeO2 catalyst with enhanced activity and durability for hydrocarbon oxidation. Molecular Catalysis, 2019, 467, 9-15.	2.0	12

Hojin Jeong

#	Article	IF	CITATIONS
19	Seemingly Negligible Amounts of Platinum Nanoparticles Mislead Electrochemical Oxygen Reduction Reaction Pathway on Platinum Singleâ€Atom Catalysts. ChemElectroChem, 2020, 7, 3716-3719.	3.4	8
20	Re-dispersion of Pd-based bimetallic catalysts by hydrothermal treatment for CO oxidation. RSC Advances, 2021, 11, 3104-3109.	3.6	3
21	Enhanced Adhesion Strength of Pt/γ-Al2O3 Catalysts on STS-444 Substrate via γ-Al2O3 Intermediate Layer Formation: Application for CO and C3H6 Oxidation. Catalysts, 2022, 12, 38.	3.5	2