Mohammad Reza Jahanshahi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/757606/publications.pdf

Version: 2024-02-01

40 papers

2,865 citations

23 h-index 488211 31 g-index

40 all docs

40 docs citations

40 times ranked

2726 citing authors

#	Article	IF	CITATIONS
1	A physics-constrained deep learning based approach for acoustic inverse scattering problems. Mechanical Systems and Signal Processing, 2022, 164, 108190.	4.4	9
2	Applications of depth sensing for advanced structural condition assessment in smart cities. , 2022, , 305-318.		2
3	Applications of computer vision-based structural health monitoring and condition assessment in future smart cities., 2022,, 193-221.		6
4	Design of one-dimensional acoustic metamaterials using machine learning and cell concatenation. Structural and Multidisciplinary Optimization, 2021, 63, 2399-2423.	1.7	33
5	Wheat Spike Blast Image Classification Using Deep Convolutional Neural Networks. Frontiers in Plant Science, 2021, 12, 673505.	1.7	11
6	Data fusion approaches for structural health monitoring and system identification: Past, present, and future. Structural Health Monitoring, 2020, 19, 552-586.	4.3	124
7	Deep Learning–Based Automated Detection of Sewer Defects in CCTV Videos. Journal of Computing in Civil Engineering, 2020, 34, .	2.5	87
8	NB-FCN: Real-Time Accurate Crack Detection in Inspection Videos Using Deep Fully Convolutional Network and Parametric Data Fusion. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 5325-5334.	2.4	22
9	ARF-Crack: rotation invariant deep fully convolutional network for pixel-level crack detection. Machine Vision and Applications, 2020, 31, 1.	1.7	24
10	Deep learningâ€based multiâ€class damage detection for autonomous postâ€disaster reconnaissance. Structural Control and Health Monitoring, 2020, 27, e2507.	1.9	65
11	Pruning deep convolutional neural networks for efficient edge computing in condition assessment of infrastructures. Computer-Aided Civil and Infrastructure Engineering, 2019, 34, 774-789.	6.3	7 3
12	Estimating Pavement Roughness by Fusing Color and Depth Data Obtained from an Inexpensive RGB-D Sensor. Sensors, 2019, 19, 1655.	2.1	37
13	An evaluation of image-based structural health monitoring using integrated unmanned aerial vehicle platform. Structural Control and Health Monitoring, 2019, 26, e2276.	1.9	34
14	Deep Convolutional Neural Network for Structural Dynamic Response Estimation and System Identification. Journal of Engineering Mechanics - ASCE, 2019, 145, .	1.6	119
15	Automated Rutting Measurement Using an Inexpensive RGB-D Sensor Fusion Approach. Journal of Transportation Engineering Part B: Pavements, 2019, 145, 04018061.	0.8	13
16	NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and NaÃ ⁻ ve Bayes Data Fusion. IEEE Transactions on Industrial Electronics, 2018, 65, 4392-4400.	5.2	665
17	Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks. Automation in Construction, 2018, 91, 273-283.	4.8	178
18	Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Structural Health Monitoring, 2018, 17, 1110-1128.	4.3	215

#	Article	IF	CITATIONS
19	Computer-Aided Approach for Rapid Post-Event Visual Evaluation of a Building Façade. Sensors, 2018, 18, 3017.	2.1	31
20	Color and depth data fusion using an RGB-D sensor for inexpensive and contactless dynamic displacement-field measurement. Structural Control and Health Monitoring, 2018, 25, e2198.	1.9	0
21	Video-based crack detection using deep learning and Nave Bayes data fusion. , 2018, , .		3
22	A textureâ€Based Video Processing Methodology Using Bayesian Data Fusion for Autonomous Crack Detection on Metallic Surfaces. Computer-Aided Civil and Infrastructure Engineering, 2017, 32, 271-287.	6.3	116
23	Vision-based quantitative assessment of microcracks on reactor internal components of nuclear power plants. Structure and Infrastructure Engineering, 2017, 13, 1013-1026.	2.0	12
24	An Autonomous Video Analysis Method for Crack Detection on Metallic Surfaces Based on Texture Recognition and Bayesian Data Fusion. , 2017, , .		1
25	Color and depth data fusion using an RGB-D sensor for inexpensive and contactless dynamic displacement-field measurement. Structural Control and Health Monitoring, 2017, 24, e2000.	1.9	26
26	3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor. Smart Materials and Structures, 2017, 26, 125016.	1.8	33
27	Accurate and Robust Scene Reconstruction in the Presence of Misassociated Features for Aerial Sensing. Journal of Computing in Civil Engineering, 2017, 31, .	2.5	6
28	Reconfigurable swarm robots for structural health monitoring: a brief review. International Journal of Intelligent Robotics and Applications, 2017, 1, 287-305.	1.6	23
29	Progressive image stitching algorithm for vision based automated inspection. , 2016, , .		O
30	Inexpensive Multimodal Sensor Fusion System for Autonomous Data Acquisition of Road Surface Conditions. IEEE Sensors Journal, 2016, 16, 7731-7743.	2.4	45
31	A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation. Smart Materials and Structures, 2013, 22, 035019.	1.8	98
32	An innovative methodology for detection and quantification of cracks through incorporation of depth perception. Machine Vision and Applications, 2013, 24, 227-241.	1.7	206
33	Parametric Performance Evaluation of Wavelet-Based Corrosion Detection Algorithms for Condition Assessment of Civil Infrastructure Systems. Journal of Computing in Civil Engineering, 2013, 27, 345-357.	2.5	30
34	Unsupervised Approach for Autonomous Pavement-Defect Detection and Quantification Using an Inexpensive Depth Sensor. Journal of Computing in Civil Engineering, 2013, 27, 743-754.	2.5	118
35	Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures. Automation in Construction, 2012, 22, 567-576.	4.8	196
36	Multi-Image Stitching and Scene Reconstruction for Evaluating Change Evolution in Structures. , 2011, , .		1

#	Article	IF	CITATIONS
37	Nondestructive vision-based approaches for condition assessment of structures. , 2011, , .		2
38	A Novel Crack Detection Approach for Condition Assessment of Structures. , $2011, \ldots$		7
39	Multi-image stitching and scene reconstruction for evaluating defect evolution in structures. Structural Health Monitoring, 2011, 10, 643-657.	4.3	55
40	A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures. Structure and Infrastructure Engineering, 2009, 5, 455-486.	2.0	139