
## Matej Praprotnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7575974/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Multiscale Simulation of Soft Matter: From Scale Bridging to Adaptive Resolution. Annual Review of<br>Physical Chemistry, 2008, 59, 545-571.              | 10.8 | 410       |
| 2  | Adaptive resolution molecular-dynamics simulation: Changing the degrees of freedom on the fly.<br>Journal of Chemical Physics, 2005, 123, 224106.         | 3.0  | 347       |
| 3  | Temperature Dependence of Water Vibrational Spectrum:Â A Molecular Dynamics Simulation Study.<br>Journal of Physical Chemistry A, 2004, 108, 11056-11062. | 2.5  | 147       |
| 4  | Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat. Soft Matter, 2008, 4, 156-161.                     | 2.7  | 113       |
| 5  | Adaptive resolution scheme for efficient hybrid atomistic-mesoscale molecular dynamics simulations of dense liquids. Physical Review E, 2006, 73, 066701. | 2.1  | 110       |
| 6  | Concurrent triple-scale simulation of molecular liquids. Journal of Chemical Physics, 2008, 128, 114110.                                                  | 3.0  | 104       |
| 7  | Coupling different levels of resolution in molecular simulations. Journal of Chemical Physics, 2010, 132, 114101.                                         | 3.0  | 93        |
| 8  | Adaptive resolution simulation of liquid water. Journal of Physics Condensed Matter, 2007, 19, 292201.                                                    | 1.8  | 85        |
| 9  | Molecular dynamics integration and molecular vibrational theory. III. The infrared spectrum of water.<br>Journal of Chemical Physics, 2005, 122, 174103.  | 3.0  | 81        |
| 10 | A macromolecule in a solvent: Adaptive resolution molecular dynamics simulation. Journal of Chemical Physics, 2007, 126, 134902.                          | 3.0  | 78        |
| 11 | Adaptive resolution simulation of an atomistic protein in MARTINI water. Journal of Chemical Physics, 2014, 140, 054114.                                  | 3.0  | 74        |
| 12 | Coupling atomistic and continuum hydrodynamics through a mesoscopic model: Application to liquid water. Journal of Chemical Physics, 2009, 131, 244107.   | 3.0  | 73        |
| 13 | Modeling diffusive dynamics in adaptive resolution simulation of liquid water. Journal of Chemical Physics, 2008, 128, 024503.                            | 3.0  | 66        |
| 14 | Molecular systems with open boundaries: Theory and simulation. Physics Reports, 2017, 693, 1-56.                                                          | 25.6 | 66        |
| 15 | ENZO: A Web Tool for Derivation and Evaluation of Kinetic Models of Enzyme Catalyzed Reactions.<br>PLoS ONE, 2011, 6, e22265.                             | 2.5  | 65        |
| 16 | Molecular dynamics integration and molecular vibrational theory. I. New symplectic integrators.<br>Journal of Chemical Physics, 2005, 122, 174101.        | 3.0  | 54        |
| 17 | Adaptive molecular resolution via a continuous change of the phase space dimensionality. Physical<br>Review E, 2007, 75, 017701.                          | 2.1  | 49        |
| 18 | Adaptive Resolution Simulation of MARTINI Solvents. Journal of Chemical Theory and Computation, 2014, 10, 2591-2598.                                      | 5.3  | 46        |

MATEJ PRAPROTNIK

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Adaptive Resolution Simulation of a DNA Molecule in Salt Solution. Journal of Chemical Theory and Computation, 2015, 11, 5035-5044.                                                                       | 5.3 | 46        |
| 20 | Open boundary molecular dynamics. European Physical Journal: Special Topics, 2015, 224, 2331-2349.                                                                                                        | 2.6 | 44        |
| 21 | Fractional dimensions of phase space variables: a tool for varying the degrees of freedom of a system in a multiscale treatment. Journal of Physics A: Mathematical and Theoretical, 2007, 40, F281-F288. | 2.1 | 40        |
| 22 | Adaptive resolution simulation of polarizable supramolecular coarse-grained water models. Journal of Chemical Physics, 2015, 142, 244118.                                                                 | 3.0 | 39        |
| 23 | Open boundary molecular dynamics of sheared star-polymer melts. Soft Matter, 2016, 12, 2416-2439.                                                                                                         | 2.7 | 39        |
| 24 | Multiscale simulation of water flow past a C540 fullerene. Journal of Computational Physics, 2012, 231, 2677-2681.                                                                                        | 3.8 | 37        |
| 25 | Molecular dynamics integration and molecular vibrational theory. II. Simulation of nonlinear molecules. Journal of Chemical Physics, 2005, 122, 174102.                                                   | 3.0 | 35        |
| 26 | Statistical Physics Problems in Adaptive Resolution Computer Simulations of Complex Fluids. Journal of Statistical Physics, 2011, 145, 946-966.                                                           | 1.2 | 34        |
| 27 | Adaptive Resolution Simulation of Supramolecular Water: The Concurrent Making, Breaking, and<br>Remaking of Water Bundles. Journal of Chemical Theory and Computation, 2016, 12, 4138-4145.               | 5.3 | 30        |
| 28 | Deciphering the dynamics of star molecules in shear flow. Soft Matter, 2017, 13, 4971-4987.                                                                                                               | 2.7 | 30        |
| 29 | Adaptive resolution molecular dynamics technique: Down to the essential. Journal of Chemical Physics, 2018, 149, 024104.                                                                                  | 3.0 | 30        |
| 30 | Comment on "Adaptive Multiscale Molecular Dynamics of Macromolecular Fluids― Physical Review<br>Letters, 2011, 107, 099801; discussion 099802.                                                            | 7.8 | 29        |
| 31 | Order and interactions in DNA arrays: Multiscale molecular dynamics simulation. Scientific Reports, 2017, 7, 4775.                                                                                        | 3.3 | 27        |
| 32 | Adaptive resolution simulation of an atomistic DNA molecule in MARTINI salt solution. European<br>Physical Journal: Special Topics, 2016, 225, 1595-1607.                                                 | 2.6 | 25        |
| 33 | Simulation approaches to soft matter: Generic statistical properties vs. chemical details. Computer<br>Physics Communications, 2008, 179, 51-60.                                                          | 7.5 | 24        |
| 34 | Adaptive resolution simulation of salt solutions. New Journal of Physics, 2013, 15, 105007.                                                                                                               | 2.9 | 24        |
| 35 | Continuum simulations of water flow in carbon nanotube membranes. New Journal of Physics, 2014, 16, 082001.                                                                                               | 2.9 | 23        |
| 36 | Adaptive resolution simulations coupling atomistic water to dissipative particle dynamics. Journal of<br>Chemical Physics, 2017, 147, 114110.                                                             | 3.0 | 22        |

MATEJ PRAPROTNIK

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Open-Boundary Molecular Dynamics of a DNA Molecule in a Hybrid Explicit/Implicit Salt Solution.<br>Biophysical Journal, 2018, 114, 2352-2362.                                                 | 0.5  | 22        |
| 38 | Application of the Eckart frame to soft matter: rotation of star polymers under shear flow. Soft<br>Matter, 2017, 13, 6988-7000.                                                              | 2.7  | 21        |
| 39 | Adaptive resolution simulations of biomolecular systems. European Biophysics Journal, 2017, 46, 821-835.                                                                                      | 2.2  | 20        |
| 40 | On phonons and water flow enhancement in carbon nanotubes. Nature Nanotechnology, 2017, 12, 1106-1108.                                                                                        | 31.5 | 19        |
| 41 | Multiscale Simulation of Protein Hydration Using the SWINGER Dynamical Clustering Algorithm.<br>Journal of Chemical Theory and Computation, 2018, 14, 1754-1761.                              | 5.3  | 19        |
| 42 | Molecular Dynamics Integration Meets Standard Theory of Molecular Vibrations. Journal of Chemical<br>Information and Modeling, 2005, 45, 1571-1579.                                           | 5.4  | 17        |
| 43 | Accelerated Simulations of Molecular Systems through Learning of Effective Dynamics. Journal of Chemical Theory and Computation, 2022, 18, 538-549.                                           | 5.3  | 17        |
| 44 | From adaptive resolution to molecular dynamics of open systems. European Physical Journal B, 2021, 94, 189.                                                                                   | 1.5  | 14        |
| 45 | Symplectic molecular dynamics integration using normal mode analysis. International Journal of<br>Quantum Chemistry, 2001, 84, 2-12.                                                          | 2.0  | 12        |
| 46 | Molecular Dynamics Integration Time Step Dependence of the Split Integration Symplectic Method on System Density. Journal of Chemical Information and Computer Sciences, 2003, 43, 1922-1927. | 2.8  | 12        |
| 47 | Molecular Dynamics Simulation of High Density DNA Arrays. Computation, 2018, 6, 3.                                                                                                            | 2.0  | 12        |
| 48 | Particle–Continuum Coupling and its Scaling Regimes: Theory and Applications. Advanced Theory and Simulations, 2020, 3, 1900232.                                                              | 2.8  | 12        |
| 49 | Implementation and evaluation of MPI-based parallel MD program. International Journal of Quantum<br>Chemistry, 2001, 84, 23-31.                                                               | 2.0  | 11        |
| 50 | New all-atom force field for molecular dynamics simulation of an AlPO4-34 molecular sieve. Journal of Computational Chemistry, 2008, 29, 122-129.                                             | 3.3  | 11        |
| 51 | STOCK: Structure mapper and online coarse-graining kit for molecular simulations. Journal of Computational Chemistry, 2015, 36, 467-477.                                                      | 3.3  | 11        |
| 52 | SWINGER: a clustering algorithm for concurrent coupling of atomistic and supramolecular liquids.<br>Interface Focus, 2019, 9, 20180075.                                                       | 3.0  | 11        |
| 53 | Tuning the Dielectric Response of Water in Nanoconfinement through Surface Wettability. ACS Nano, 2021, 15, 20311-20318.                                                                      | 14.6 | 10        |
| 54 | Continuum simulations of water flow past fullerene molecules. European Physical Journal: Special<br>Topics, 2015, 224, 2321-2330.                                                             | 2.6  | 8         |

Matej Praprotnik

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Splay–density coupling in semiflexible main-chain nematic polymers with hairpins. Soft Matter, 2018,<br>14, 5898-5905.                                                         | 2.7 | 8         |
| 56 | Multiscale Molecular Modeling. Methods in Molecular Biology, 2013, 924, 567-583.                                                                                               | 0.9 | 7         |
| 57 | Back-mapping augmented adaptive resolution simulation. Journal of Chemical Physics, 2020, 153, 164118.                                                                         | 3.0 | 7         |
| 58 | Parallel programming library for molecular dynamics simulations. International Journal of Quantum<br>Chemistry, 2004, 96, 530-536.                                             | 2.0 | 6         |
| 59 | Adaptive Resolution Molecular Dynamics Technique. , 2018, , 1-15.                                                                                                              |     | 3         |
| 60 | Lessons learned from urgent computing in Europe: Tackling the COVID-19 pandemic. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1 | 3         |
| 61 | Dissipative Particle Dynamics Simulation of Ultrasound Propagation through Liquid Water. Journal of Chemical Theory and Computation, 2022, 18, 1227-1240.                      | 5.3 | 3         |
| 62 | Adaptive resolution simulation of liquid water. Journal of Physics Condensed Matter, 2008, 21, 499801-499801.                                                                  | 1.8 | 2         |
| 63 | Reply to comments by R. Klein on "Open boundary molecular dynamics― European Physical Journal:<br>Special Topics, 2015, 224, 2511-2513.                                        | 2.6 | 2         |
| 64 | Density–Nematic Coupling in Isotropic Linear Polymers: Acoustic and Osmotic Birefringence.<br>Advanced Theory and Simulations, 2019, 2, 1900019.                               | 2.8 | 2         |
| 65 | Domain Decomposition Methods for Multiscale Modeling. , 2020, , 2551-2571.                                                                                                     |     | 2         |
| 66 | Adaptive Resolution Molecular Dynamics Technique. , 2020, , 1443-1457.                                                                                                         |     | 1         |
| 67 | The split integration symplectic method. Cellular and Molecular Biology Letters, 2002, 7, 147-8.                                                                               | 7.0 | 1         |
| 68 | Suspension of discrete microscopic oscillators as a model of an ultrasonic metafluid. Physical<br>Review B, 2022, 105, .                                                       | 3.2 | 1         |
| 69 | Contributory presentations/posters. Journal of Biosciences, 1999, 24, 33-198.                                                                                                  | 1.1 | 0         |
| 70 | Molecular Modelingâ $\in$ "A New Approach. AIP Conference Proceedings, 2007, , .                                                                                               | 0.4 | 0         |
| 71 | Parallel Approaches in Molecular Dynamics Simulations. , 2009, , 281-305.                                                                                                      |     | 0         |
| 72 | Recent algorithmic development of parallel force decomposition and Hamiltonian splitting methods                                                                               |     | 0         |

for macromolecular simulation. , 2012, , .

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Extending the Adress Multiscale Scheme for Protein and Bilayer Applications. Biophysical Journal, 2016, 110, 643a-644a.                                                                          | 0.5 | 0         |
| 74 | Domain Decomposition Methods for Multiscale Modeling. , 2018, , 1-21.                                                                                                                            |     | 0         |
| 75 | Isotropic Polymers: Density–Nematic Coupling in Isotropic Linear Polymers: Acoustic and Osmotic<br>Birefringence (Adv. Theory Simul. 5/2019). Advanced Theory and Simulations, 2019, 2, 1970016. | 2.8 | 0         |