
Gaston Gutierrez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7575920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Physical Review D, 2018, 98, .	4.7	751
2	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. Astrophysical Journal Letters, 2017, 848, L17.	8.3	656
3	EIGHT NEW MILKY WAY COMPANIONS DISCOVERED IN FIRST-YEAR DARK ENERGY SURVEY DATA. Astrophysical Journal, 2015, 807, 50.	4.5	466
4	The Dark Energy Survey: Data Release 1. Astrophysical Journal, Supplement Series, 2018, 239, 18.	7.7	455
5	Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear. Physical Review D, 2018, 98, .	4.7	412
6	EIGHT ULTRA-FAINT GALAXY CANDIDATES DISCOVERED IN YEAR TWO OF THE DARK ENERGY SURVEY. Astrophysical Journal, 2015, 813, 109.	4.5	405
7	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera. Astrophysical Journal Letters, 2017, 848, L16.	8.3	392
8	THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA. Astrophysical Journal, Supplement Series, 2016, 224, 1.	7.7	233
9	First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters. Astrophysical Journal Letters, 2019, 872, L30.	8.3	201
10	Stellar Streams Discovered in the Dark Energy Survey. Astrophysical Journal, 2018, 862, 114.	4.5	193
11	Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology. Astrophysical Journal, Supplement Series, 2018, 235, 33.	7.7	192
12	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
13	Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration. Physical Review D, 2022, 105, .	4.7	151
14	Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to modeling uncertainty. Physical Review D, 2022, 105, .	4.7	145
15	Constraints on Dark Matter Properties from Observations of MilkyÂWay Satellite Galaxies. Physical Review Letters, 2021, 126, 091101.	7.8	144
16	First cosmological results using Type Ia supernovae from the Dark Energy Survey: measurement of the Hubble constant. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2184-2196.	4.4	143
17	STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408â^'5354. Monthly Notices of the Royal Astronomical Society, 2020, 494, 6072-6102.	4.4	140
18	Dark Energy Survey Year 1 Results: Cosmological constraints from cluster abundances and weak lensing. Physical Review D, 2020, 102, .	4.7	140

#	Article	IF	CITATIONS
19	Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1352-1378.	4.4	135
20	The Dark Energy Survey Data Release 2. Astrophysical Journal, Supplement Series, 2021, 255, 20.	7.7	120
21	The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel'dovich Galaxy Clusters. Astrophysical Journal, Supplement Series, 2021, 253, 3.	7.7	118
22	Milky Way Satellite Census. I. The Observational Selection Function for Milky Way Satellites in DES Y3 and Pan-STARRS DR1. Astrophysical Journal, 2020, 893, 47.	4.5	110
23	Rapidly evolving transients in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2018, 481, 894-917.	4.4	109
24	Milky Way Satellite Census. II. Galaxy–Halo Connection Constraints Including the Impact of the Large Magellanic Cloud. Astrophysical Journal, 2020, 893, 48.	4.5	101
25	The SPTpol Extended Cluster Survey. Astrophysical Journal, Supplement Series, 2020, 247, 25.	7.7	101
26	Dark Energy Survey Year 3 Results: Photometric Data Set for Cosmology. Astrophysical Journal, Supplement Series, 2021, 254, 24.	7.7	93
27	First Cosmology Results Using SNe Ia from the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation. Astrophysical Journal, 2019, 874, 150.	4.5	92
28	Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey. Astrophysical Journal, 2018, 854, 160.	4.5	87
29	Methods for cluster cosmology and application to the SDSS in preparation for DES Year 1 release. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4779-4800.	4.4	82
30	Forward Global Photometric Calibration of the Dark Energy Survey. Astronomical Journal, 2018, 155, 41.	4.7	74
31	A Statistical Standard Siren Measurement of the Hubble Constant from the LIGO/Virgo Gravitational Wave Compact Object Merger GW190814 and Dark Energy Survey Galaxies. Astrophysical Journal Letters, 2020, 900, L33.	8.3	74
32	VDES J2325â^'5229 a <i>z</i> = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4325-4334.	4.4	66
33	First cosmology results using type la supernovae from the Dark Energy Survey: the effect of host galaxy properties on supernova luminosity. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4426-4447.	4.4	63
34	Finding high-redshift strong lenses in DES using convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5330-5349.	4.4	62
35	First cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1171-1187.	4.4	62
36	First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey: Photometric Pipeline and Light-curve Data Release. Astrophysical Journal, 2019, 874, 106.	4.5	60

#	Article	IF	CITATIONS
37	Shadows in the Dark: Low-surface-brightness Galaxies Discovered in the Dark Energy Survey. Astrophysical Journal, Supplement Series, 2021, 252, 18.	7.7	56
38	A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 823, L33.	8.3	55
39	Dark Energy Survey Year 1 Results: Cosmological Constraints from Cluster Abundances, Weak Lensing, and Galaxy Correlations. Physical Review Letters, 2021, 126, 141301.	7.8	55
40	Digging deeper into the Southern skies: a compact Milky Way companion discovered in first-year Dark Energy Survey data. Monthly Notices of the Royal Astronomical Society, 2016, 458, 603-612.	4.4	53
41	Joint measurement of lensing–galaxy correlations using SPT and DES SV data. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4099-4114.	4.4	50
42	Quasar Accretion Disk Sizes from Continuum Reverberation Mapping from the Dark Energy Survey. Astrophysical Journal, 2018, 862, 123.	4.5	50
43	Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993. Astrophysical Journal Letters, 2017, 849, L34.	8.3	49
44	The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations. Astrophysical Journal, Supplement Series, 2017, 232, 15.	7.7	48
45	A new RASS galaxy cluster catalogue with low contamination extending to z â^1⁄4 1 in the DES overlap region. Monthly Notices of the Royal Astronomical Society, 2019, 488, 739-769.	4.4	44
46	Dark Energy Surveyed Year 1 results: calibration of cluster mis-centring in the redMaPPer catalogues. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2578-2593.	4.4	44
47	Birds of a Feather? Magellan/IMACS Spectroscopy of the Ultra-faint Satellites Grus II, Tucana IV, and Tucana V*. Astrophysical Journal, 2020, 892, 137.	4.5	43
48	Discovery of two gravitationally lensed quasars in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1260-1265.	4.4	41
49	A measurement of CMB cluster lensing with SPT and DES year 1 data. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2674-2688.	4.4	41
50	Astrometric Calibration and Performance of the Dark Energy Camera. Publications of the Astronomical Society of the Pacific, 2017, 129, 074503.	3.1	40
51	A DECAM SEARCH FOR AN OPTICAL COUNTERPART TO THE LIGO GRAVITATIONAL-WAVE EVENT GW151226. Astrophysical Journal Letters, 2016, 826, L29.	8.3	38
52	A stellar overdensity associated with the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1349-1360.	4.4	38
53	DISCOVERY OF A STELLAR OVERDENSITY IN ERIDANUS–PHOENIX IN THE DARK ENERGY SURVEY. Astrophysical Journal, 2016, 817, 135.	4.5	36
54	The Dark Energy Survey view of the Sagittarius stream: discovery of two faint stellar system candidates. Monthly Notices of the Royal Astronomical Society, 2017, 468, 97-108.	4.4	36

#	Article	IF	CITATIONS
55	Search for RR Lyrae stars in DES ultrafaint systems: GrusÂl, KimÂ2, PhoenixÂll, and GrusÂll. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2183-2199.	4.4	35
56	A Search for Kilonovae in the Dark Energy Survey. Astrophysical Journal, 2017, 837, 57.	4.5	34
57	The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2017/2018 follow-up campaign: discovery of 10 lensed quasars and 10 quasar pairs. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3491-3511.	4.4	34
58	Cosmological constraints from DES Y1 cluster abundances and SPT multiwavelength data. Physical Review D, 2021, 103, .	4.7	34
59	Quasar Accretion Disk Sizes from Continuum Reverberation Mapping in the DES Standard-star Fields. Astrophysical Journal, Supplement Series, 2020, 246, 16.	7.7	33
60	Discovery of the Lensed Quasar System DES J0408-5354. Astrophysical Journal Letters, 2017, 838, L15.	8.3	32
61	Discovery and Physical Characterization of a Large Scattered Disk Object at 92 au. Astrophysical Journal Letters, 2017, 839, L15.	8.3	28
62	Mass Calibration of Optically Selected DES Clusters Using a Measurement of CMB-cluster Lensing with SPTpol Data. Astrophysical Journal, 2019, 872, 170.	4.5	28
63	Stellar mass as a galaxy cluster mass proxy: application to the Dark Energy Survey redMaPPer clusters. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4591-4606.	4.4	28
64	Constraints on the Physical Properties of GW190814 through Simulations Based on DECam Follow-up Observations by the Dark Energy Survey. Astrophysical Journal, 2020, 901, 83.	4.5	28
65	The Morphology and Structure of Stellar Populations in the Fornax Dwarf Spheroidal Galaxy from Dark Energy Survey Data. Astrophysical Journal, 2019, 881, 118.	4.5	27
66	Trans-Neptunian Objects Found in the First Four Years of the Dark Energy Survey. Astrophysical Journal, Supplement Series, 2020, 247, 32.	7.7	27
67	First Cosmology Results using Supernovae Ia from the Dark Energy Survey: Survey Overview, Performance, and Supernova Spectroscopy. Astronomical Journal, 2020, 160, 267.	4.7	27
68	ASSESSMENT OF SYSTEMATIC CHROMATIC ERRORS THAT IMPACT SUB-1% PHOTOMETRIC PRECISION IN LARGE-AREA SKY SURVEYS. Astronomical Journal, 2016, 151, 157.	4.7	24
69	A catalogue of structural and morphological measurements for DES Y1. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2018-2040.	4.4	23
70	Dust Reverberation Mapping in Distant Quasars from Optical and Mid-infrared Imaging Surveys. Astrophysical Journal, 2020, 900, 58.	4.5	22
71	A Study of Quasar Selection in the Supernova Fields of the Dark Energy Survey. Astronomical Journal, 2017, 153, 107.	4.7	21
72	Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1. Astrophysical Journal, 2017, 843, 148.	4.5	20

#	Article	IF	CITATIONS
73	Star-galaxy classification in the Dark Energy Survey Y1 dataset. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	19
74	Identifying RR Lyrae Variable Stars in Six Years of the Dark Energy Survey. Astrophysical Journal, 2021, 911, 109.	4.5	18
75	Optical–SZE scaling relations for DES optically selected clusters within the SPT-SZ Survey. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3347-3360.	4.4	17
76	Identification of RR Lyrae Stars in Multiband, Sparsely Sampled Data from the Dark Energy Survey Using Template Fitting and Random Forest Classification. Astronomical Journal, 2019, 158, 16.	4.7	16
77	Milky Way Satellite Census. IV. Constraints on Decaying Dark Matter from Observations of Milky Way Satellite Galaxies. Astrophysical Journal, 2022, 932, 128.	4.5	16
78	Modelling the Milky Way – I. Method and first results fitting the thick disc and halo with DES-Y3 data. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1547-1562.	4.4	15
79	The WaZP galaxy cluster sample of the dark energy survey year 1. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4435-4456.	4.4	15
80	A Search for Optical Emission from Binary Black Hole Merger GW170814 with the Dark Energy Camera. Astrophysical Journal Letters, 2019, 873, L24.	8.3	14
81	A Deeper Look at DES Dwarf Galaxy Candidates: Grus i and Indus ii. Astrophysical Journal, 2021, 916, 81.	4.5	14
82	Studying Type II supernovae as cosmological standard candles using the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4860-4892.	4.4	12
83	Exploring the contamination of the DES-Y1 cluster sample with SPT-SZ selected clusters. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1253-1272.	4.4	12
84	The Observed Evolution of the Stellar Mass–Halo Mass Relation for Brightest Central Galaxies. Astrophysical Journal, 2022, 928, 28.	4.5	11
85	Optical follow-up of gravitational wave triggers with DECam during the first two LIGO/VIRGO observing runs. Astronomy and Computing, 2020, 33, 100425.	1.7	9
86	SOAR/Goodman Spectroscopic Assessment of Candidate Counterparts of the LIGO/Virgo Event GW190814*. Astrophysical Journal, 2022, 929, 115.	4.5	9
87	Astrometry and Occultation Predictions to Trans-Neptunian and Centaur Objects Observed within the Dark Energy Survey. Astronomical Journal, 2019, 157, 120.	4.7	8
88	DES16C3cje: A low-luminosity, long-lived supernova. Monthly Notices of the Royal Astronomical Society, 2020, 496, 95-110.	4.4	8
89	A DECam Search for Explosive Optical Transients Associated with IceCube Neutrino Alerts. Astrophysical Journal, 2019, 883, 125.	4.5	8
90	A DESGW Search for the Electromagnetic Counterpart to the LIGO/Virgo Gravitational-wave Binary Neutron Star Merger Candidate S190510g. Astrophysical Journal, 2020, 903, 75.	4.5	8

#	Article	IF	CITATIONS
91	From the Fire: A Deeper Look at the Phoenix Stream. Astrophysical Journal, 2022, 925, 118.	4.5	8
92	The Evolution of AGN Activity in Brightest Cluster Galaxies. Astronomical Journal, 2022, 163, 146.	4.7	7
93	Observation and confirmation of nine strong-lensing systems in Dark Energy Survey Year 1 data. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1308-1322.	4.4	6
94	Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. I. Evidence for Thermal Energy Anisotropy Using Oriented Stacking. Astrophysical Journal, 2022, 933, 134.	4.5	6
95	DeepZipper: A Novel Deep-learning Architecture for Lensed Supernovae Identification. Astrophysical Journal, 2022, 927, 109.	4.5	5
96	The Dark Energy Survey Bright Arcs Survey: Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey 5000 Square Degree Footprint. Astrophysical Journal, Supplement Series, 2022, 259, 27.	7.7	4
97	Systematic study of projection biases in weak lensing analysis. Physical Review D, 2022, 105, .	4.7	1