Janet M Thornton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7575590/publications.pdf

Version: 2024-02-01

408 papers 63,035 citations

110 h-index 239 g-index

541 all docs

541 docs citations

541 times ranked

58363 citing authors

#	Article	IF	CITATIONS
1	The rapid generation of mutation data matrices from protein sequences. Bioinformatics, 1992, 8, 275-282.	1.8	4,891
2	AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 1996, 8, 477-86.	1.6	4,736
3	LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, Design and Selection, 1995, 8, 127-134.	1.0	4,648
4	Satisfying Hydrogen Bonding Potential in Proteins. Journal of Molecular Biology, 1994, 238, 777-793.	2.0	2,001
5	Stereochemical quality of protein structure coordinates. Proteins: Structure, Function and Bioinformatics, 1992, 12, 345-364.	1.5	1,436
6	Main-chain Bond Lengths and Bond Angles in Protein Structures. Journal of Molecular Biology, 1993, 231, 1049-1067.	2.0	1,142
7	Influence of proline residues on protein conformation. Journal of Molecular Biology, 1991, 218, 397-412.	2.0	1,071
8	Ribosomal Protein S6 Kinase 1 Signaling Regulates Mammalian Life Span. Science, 2009, 326, 140-144.	6.0	1,009
9	PROMOTIF—A program to identify and analyze structural motifs in proteins. Protein Science, 1996, 5, 212-220.	3.1	955
10	A revised set of potentials for βâ€turn formation in proteins. Protein Science, 1994, 3, 2207-2216.	3.1	918
10		3.1	918
	A revised set of potentials for βâ€ŧurn formation in proteins. Protein Science, 1994, 3, 2207-2216.		
11	A revised set of potentials for βâ€turn formation in proteins. Protein Science, 1994, 3, 2207-2216. PDBsum: Structural summaries of PDB entries. Protein Science, 2018, 27, 129-134. Metal ions in biological catalysis: from enzyme databases to general principles. Journal of Biological	3.1	910
11 12	A revised set of potentials for βâ€turn formation in proteins. Protein Science, 1994, 3, 2207-2216. PDBsum: Structural summaries of PDB entries. Protein Science, 2018, 27, 129-134. Metal ions in biological catalysis: from enzyme databases to general principles. Journal of Biological Inorganic Chemistry, 2008, 13, 1205-1218.	3.1	910
11 12 13	A revised set of potentials for βâ€turn formation in proteins. Protein Science, 1994, 3, 2207-2216. PDBsum: Structural summaries of PDB entries. Protein Science, 2018, 27, 129-134. Metal ions in biological catalysis: from enzyme databases to general principles. Journal of Biological Inorganic Chemistry, 2008, 13, 1205-1218. Protein superfamilles and domain superfolds. Nature, 1994, 372, 631-634. NEW EMBO MEMBER'S REVIEW: Diversity of protein-protein interactions. EMBO Journal, 2003, 22,	3.1 1.1 13.7	910 868 783
11 12 13	A revised set of potentials for βâ€turn formation in proteins. Protein Science, 1994, 3, 2207-2216. PDBsum: Structural summaries of PDB entries. Protein Science, 2018, 27, 129-134. Metal ions in biological catalysis: from enzyme databases to general principles. Journal of Biological Inorganic Chemistry, 2008, 13, 1205-1218. Protein superfamilles and domain superfolds. Nature, 1994, 372, 631-634. NEW EMBO MEMBER'S REVIEW: Diversity of protein-protein interactions. EMBO Journal, 2003, 22, 3486-3492. Evolution of function in protein superfamilies, from a structural perspective 1 1Edited by A. R. Fersht.	3.1 1.1 13.7 3.5	910 868 783
11 12 13 14	A revised set of potentials for βâ€ŧurn formation in proteins. Protein Science, 1994, 3, 2207-2216. PDBsum: Structural summaries of PDB entries. Protein Science, 2018, 27, 129-134. Metal ions in biological catalysis: from enzyme databases to general principles. Journal of Biological Inorganic Chemistry, 2008, 13, 1205-1218. Protein superfamilles and domain superfolds. Nature, 1994, 372, 631-634. NEW EMBO MEMBER'S REVIEW: Diversity of protein-protein interactions. EMBO Journal, 2003, 22, 3486-3492. Evolution of function in protein superfamilies, from a structural perspective 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 2001, 307, 1113-1143. ππ interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins.	3.1 1.1 13.7 3.5	910 868 783 739

#	Article	IF	CITATIONS
19	One Fold with Many Functions: The Evolutionary Relationships between TIM Barrel Families Based on their Sequences, Structures and Functions. Journal of Molecular Biology, 2002, 321, 741-765.	2.0	568
20	The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Research, 2004, 32, 129D-133.	6.5	541
21	Structural Characterisation and Functional Significance of Transient Protein–Protein Interactions. Journal of Molecular Biology, 2003, 325, 991-1018.	2.0	537
22	PDBsum: a web-based database of summaries and analyses of all PDB structures. Trends in Biochemical Sciences, 1997, 22, 488-490.	3.7	536
23	An overview of the structures of protein-DNA complexes. Genome Biology, 2000, 1, reviews001.1.	13.9	531
24	Analysis of Catalytic Residues in Enzyme Active Sites. Journal of Molecular Biology, 2002, 324, 105-121.	2.0	529
25	Protein-protein interactions: A review of protein dimer structures. Progress in Biophysics and Molecular Biology, 1995, 63, 31-65.	1.4	507
26	Conformation of Î ² -hairpins in protein structures. Journal of Molecular Biology, 1989, 206, 759-777.	2.0	490
27	Evidence for lifespan extension and delayed age–related biomarkers in insulin receptor substrate 1 null mice. FASEB Journal, 2008, 22, 807-818.	0.2	487
28	Antibody-antigen Interactions: Contact Analysis and Binding Site Topography. Journal of Molecular Biology, 1996, 262, 732-745.	2.0	456
29	Protein promiscuity and its implications for biotechnology. Nature Biotechnology, 2009, 27, 157-167.	9.4	434
30	Prediction of protein-protein interaction sites using patch analysis 1 1Edited by G. von Heijne. Journal of Molecular Biology, 1997, 272, 133-143.	2.0	411
31	CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Research, 2015, 43, D376-D381.	6.5	399
32	Protein-DNA interactions: a structural analysis. Journal of Molecular Biology, 1999, 287, 877-896.	2.0	397
33	Genome-wide Responses to Mitochondrial Dysfunction. Molecular Biology of the Cell, 2001, 12, 297-308.	0.9	391
34	Analysis of Main Chain Torsion Angles in Proteins: Prediction of NMR Coupling Constants for Native and Random Coil Conformations. Journal of Molecular Biology, 1996, 255, 494-506.	2.0	379
35	PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Research, 2004, 33, D266-D268.	6.5	373
36	Predicting Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure. PLoS Computational Biology, 2009, 5, e1000585.	1.5	356

#	Article	lF	Citations
37	The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chemico-Biological Interactions, 2009, 178, 94-98.	1.7	329
38	Amino/Aromatic Interactions in Proteins: Is the Evidence Stacked Against Hydrogen Bonding?. Journal of Molecular Biology, 1994, 239, 315-331.	2.0	319
39	Protein-protein interfaces: Analysis of amino acid conservation in homodimers. Proteins: Structure, Function and Bioinformatics, 2001, 42, 108-124.	1.5	299
40	Tess: A geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites. Protein Science, 1997, 6, 2308-2323.	3.1	297
41	PROTEIN FAMILIES AND THEIR EVOLUTION—A STRUCTURAL PERSPECTIVE. Annual Review of Biochemistry, 2005, 74, 867-900.	5.0	295
42	Buried waters and internal cavities in monomeric proteins. Protein Science, 1994, 3, 1224-1235.	3.1	293
43	Predicting protein function from sequence and structural data. Current Opinion in Structural Biology, 2005, 15, 275-284.	2.6	280
44	PDBsum additions. Nucleic Acids Research, 2014, 42, D292-D296.	6.5	279
45	The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Research, 2007, 35, D291-D297.	6.5	274
46	Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data. PLoS Computational Biology, 2007, 3, e206.	1.5	261
47	Structural Families in Loops of Homologous Proteins: Automatic Classification, Modelling and Application to Antibodies. Journal of Molecular Biology, 1996, 263, 800-815.	2.0	257
48	Protein–DNA Interactions: Amino Acid Conservation and the Effects of Mutations on Binding Specificity. Journal of Molecular Biology, 2002, 320, 991-1009.	2.0	243
49	Prepublication data sharing. Nature, 2009, 461, 168-170.	13.7	243
50	Solvent-induced distortions and the curvature of α-helices. Nature, 1983, 306, 281-283.	13.7	235
51	Derivation of 3D coordinate templates for searching structural databases: Application to serâ€Hisâ€Asp catalytic triads in the serine proteinases and lipases. Protein Science, 1996, 5, 1001-1013.	3.1	229
52	From protein structure to function. Current Opinion in Structural Biology, 1999, 9, 374-382.	2.6	229
53	The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Research, 2004, 33, D247-D251.	6.5	226
54	Intrinsic φ,Ï^ propensities of amino acids, derived from the coil regions of known structures. Nature Structural Biology, 1995, 2, 596-603.	9.7	225

#	Article	IF	Citations
55	Mitochondria-to-Nuclear Signaling Is Regulated by the Subcellular Localization of the Transcription Factors Rtg1p and Rtg3p. Molecular Biology of the Cell, 2000, 11, 2103-2115.	0.9	223
56	Discriminating between homodimeric and monomeric proteins in the crystalline state. Proteins: Structure, Function and Bioinformatics, 2000, 41, 47-57.	1.5	217
57	Protein folds and functions. Structure, 1998, 6, 875-884.	1.6	207
58	The implications of alternative splicing in the ENCODE protein complement. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5495-5500.	3.3	206
59	Amino and carboxy-terminal regions in globular proteins. Journal of Molecular Biology, 1983, 167, 443-460.	2.0	198
60	The European dimension for the mouse genome mutagenesis program. Nature Genetics, 2004, 36, 925-927.	9.4	195
61	Protein Function Prediction Using Local 3D Templates. Journal of Molecular Biology, 2005, 351, 614-626.	2.0	195
62	BLEEP?potential of mean force describing protein-ligand interactions: I. Generating potential. Journal of Computational Chemistry, 1999, 20, 1165-1176.	1.5	194
63	From structure to function: approaches and limitations. Nature Structural Biology, 2000, 7, 991-994.	9.7	193
64	Identification, classification, and analysis of betaâ€bulges in proteins. Protein Science, 1993, 2, 1574-1590.	3.1	191
65	An algorithm for constraint-based structural template matching: application to 3D templates with statistical analysis. Bioinformatics, 2003, 19, 1644-1649.	1.8	191
66	Shape Variation in Protein Binding Pockets and their Ligands. Journal of Molecular Biology, 2007, 368, 283-301.	2.0	188
67	New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures. Nucleic Acids Research, 2012, 41, D490-D498.	6.5	188
68	Structural and Chemical Profiling of the Human Cytosolic Sulfotransferases. PLoS Biology, 2007, 5, e97.	2.6	187
69	The structural basis of allosteric regulation in proteins. FEBS Letters, 2009, 583, 1692-1698.	1.3	187
70	SIRIUS. Journal of Molecular Biology, 1990, 211, 595-615.	2.0	186
71	Using electrostatic potentials to predict DNA-binding sites on DNA-binding proteins. Nucleic Acids Research, 2003, 31, 7189-7198.	6.5	186
72	Determinants of strand register in antiparallel βâ€sheets of proteins. Protein Science, 1998, 7, 2287-2300.	3.1	182

#	Article	IF	CITATIONS
73	Protein function annotation by homology-based inference. Genome Biology, 2009, 10, 207.	13.9	182
74	A method for localizing ligand binding pockets in protein structures. Proteins: Structure, Function and Bioinformatics, 2005, 62, 479-488.	1.5	181
75	Understanding nature's catalytic toolkit. Trends in Biochemical Sciences, 2005, 30, 622-629.	3.7	177
76	The CATH classification revisited-architectures reviewed and new ways to characterize structural divergence in superfamilies. Nucleic Acids Research, 2009, 37, D310-D314.	6.5	174
77	Evolutionary conservation of regulated longevity assurance mechanisms. Genome Biology, 2007, 8, R132.	13.9	173
78	Validation of protein models derived from experiment. Current Opinion in Structural Biology, 1998, 8, 631-639.	2.6	172
79	Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons. Bioinformatics, 2005, 21, 2347-2355.	1.8	170
80	The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Research, 2014, 42, D485-D489.	6.5	168
81	Using A Neural Network and Spatial Clustering to Predict the Location of Active Sites in Enzymes. Journal of Molecular Biology, 2003, 330, 719-734.	2.0	167
82	Deviations from Planarity of the Peptide Bond in Peptides and Proteins. Journal of Molecular Biology, 1996, 264, 1180-1195.	2.0	163
83	Protein folds, functions and evolution. Journal of Molecular Biology, 1999, 293, 333-342.	2.0	163
84	Lithium Promotes Longevity through GSK3/NRF2-Dependent Hormesis. Cell Reports, 2016, 15, 638-650.	2.9	163
85	Plasticity of enzyme active sites. Trends in Biochemical Sciences, 2002, 27, 419-426.	3.7	162
86	Conservation helps to identify biologically relevant crystal contacts. Journal of Molecular Biology, 2001, 313, 399-416.	2.0	159
87	Alpha plus beta folds revisited: some favoured motifs. Structure, 1993, 1, 105-120.	1.6	156
88	Conformational Changes Observed in Enzyme Crystal Structures upon Substrate Binding. Journal of Molecular Biology, 2005, 346, 21-28.	2.0	153
89	Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites. Nucleic Acids Research, 2018, 46, D618-D623.	6.5	151
90	Domain assignment for protein structures using a consensus approach: Characterization and analysis. Protein Science, 1998, 7, 233-242.	3.1	147

#	Article	IF	Citations
91	Heme proteinsâ€"Diversity in structural characteristics, function, and folding. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2349-2368.	1.5	147
92	PoreWalker: A Novel Tool for the Identification and Characterization of Channels in Transmembrane Proteins from Their Three-Dimensional Structure. PLoS Computational Biology, 2009, 5, e1000440.	1.5	146
93	Elucidating Human Phosphatase-Substrate Networks. Science Signaling, 2013, 6, rs10.	1.6	145
94	Potential energy functions for threading. Current Opinion in Structural Biology, 1996, 6, 210-216.	2.6	144
95	Searching for functional sites in protein structures. Current Opinion in Chemical Biology, 2004, 8, 3-7.	2.8	138
96	Progress of Structural Genomics Initiatives: An Analysis of Solved Target Structures. Journal of Molecular Biology, 2005, 348, 1235-1260.	2.0	136
97	Quantifying the Similarities within Fold Space. Journal of Molecular Biology, 2002, 323, 909-926.	2.0	133
98	CATH: expanding the horizons of structure-based functional annotations for genome sequences. Nucleic Acids Research, 2019, 47, D280-D284.	6.5	131
99	Recognition of super-secondary structure in proteins. Journal of Molecular Biology, 1984, 173, 487-514.	2.0	128
100	Sequence and Structural Differences between Enzyme and Nonenzyme Homologs. Structure, 2002, 10, 1435-1451.	1.6	127
101	Extending CATH: increasing coverage of the protein structure universe and linking structure with function. Nucleic Acids Research, 2011, 39, D420-D426.	6.5	126
102	Protein Recognition of Adenylate: An Example of a Fuzzy Recognition Template. Journal of Molecular Biology, 1996, 263, 486-500.	2.0	125
103	Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein. Human Mutation, 2002, 19, 149-164.	1.1	122
104	Retrograde Signaling Is Regulated by the Dynamic Interaction between Rtg2p and Mks1p. Molecular Cell, 2003, 12, 401-411.	4.5	122
105	Using a Library of Structural Templates to Recognise Catalytic Sites and Explore their Evolution in Homologous Families. Journal of Molecular Biology, 2005, 347, 565-581.	2.0	122
106	DamID in <i>C. elegans</i> reveals longevityâ€associated targets of DAFâ€16/FoxO. Molecular Systems Biology, 2010, 6, 399.	3.2	122
107	Small Molecule Subgraph Detector (SMSD) toolkit. Journal of Cheminformatics, 2009, 1, 12.	2.8	117
108	Understanding the Functional Roles of Amino Acid Residues in Enzyme Catalysis. Journal of Molecular Biology, 2009, 390, 560-577.	2.0	117

#	Article	IF	CITATIONS
109	Integrating Structure, Bioinformatics, and Enzymology to Discover Function. Journal of Biological Chemistry, 2003, 278, 26039-26045.	1.6	115
110	Evolution of protein function, from a structural perspective. Current Opinion in Chemical Biology, 1999, 3, 548-556.	2.8	114
111	Prediction of protein structure from amino acid sequence. Nature, 1978, 271, 15-20.	13.7	112
112	Prediction of the location and type of βâ€ŧurns in proteins using neural networks. Protein Science, 1999, 8, 1045-1055.	3.1	112
113	BLEEP?potential of mean force describing protein-ligand interactions: II. Calculation of binding energies and comparison with experimental data. Journal of Computational Chemistry, 1999, 20, 1177-1185.	1.5	112
114	Genomeâ€wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling. Molecular Systems Biology, 2011, 7, 502.	3.2	112
115	EC-BLAST: a tool to automatically search and compare enzyme reactions. Nature Methods, 2014, 11, 171-174.	9.0	112
116	Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiological Genomics, 2006, 27, 187-200.	1.0	109
117	AlphaFold heralds a data-driven revolution in biology and medicine. Nature Medicine, 2021, 27, 1666-1669.	15.2	108
118	The impact of AlphaFold2 one year on. Nature Methods, 2022, 19, 15-20.	9.0	107
119	Protein Superfamily Evolution and the Last Universal Common Ancestor (LUCA). Journal of Molecular Evolution, 2006, 63, 513-525.	0.8	105
120	Longevity GWAS Using the <i>Drosophila </i> A Biological Sciences and Medical Sciences, 2015, 70, 1470-1478.	1.7	105
121	HERA—A program to draw schematic diagrams of protein secondary structures. Proteins: Structure, Function and Bioinformatics, 1990, 8, 203-212.	1.5	104
122	Structures of Nâ€termini of helices in proteins. Protein Science, 1997, 6, 147-155.	3.1	104
123	Towards an understanding of the arginine-aspartate interaction. Journal of Molecular Biology, 1992, 226, 251-262.	2.0	103
124	A Structure-based Anatomy of the E.coli Metabolome. Journal of Molecular Biology, 2003, 334, 697-719.	2.0	103
125	Conformational Diversity of Ligands Bound to Proteins. Journal of Molecular Biology, 2006, 356, 928-944.	2.0	103
126	Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer's disease. PLoS Genetics, 2017, 13, e1006593.	1.5	102

#	Article	IF	Citations
127	The evolution and structural anatomy of the small molecule metabolic pathways in Escherichia coli. Journal of Molecular Biology, 2001, 311, 693-708.	2.0	101
128	Protein structural topology: Automated analysis and diagrammatic representation. Protein Science, 1999, 8, 897-904.	3.1	101
129	Knowledge-based validation of protein structure coordinates derived by X-ray crystallography and NMR spectroscopy. Current Opinion in Structural Biology, 1994, 4, 731-737.	2.6	100
130	Analysis and prediction of carbohydrate binding sites. Protein Engineering, Design and Selection, 2000, 13, 89-98.	1.0	100
131	Identifying DNA-binding proteins using structural motifs and the electrostatic potential. Nucleic Acids Research, 2004, 32, 4732-4741.	6.5	100
132	Diapause-associated metabolic traits reiterated in long-lived daf-2 mutants in the nematode Caenorhabditis elegans. Mechanisms of Ageing and Development, 2006, 127, 458-472.	2.2	99
133	Small binding proteins selected from a combinatorial repertoire of knottins displayed on phage. Journal of Molecular Biology, 1998, 277, 317-332.	2.0	98
134	Successful protein fold recognition by optimal sequence threading validated by rigorous blind testing. Proteins: Structure, Function and Bioinformatics, 1995, 23, 387-397.	1.5	97
135	Catalysing New Reactions during Evolution: Economy of Residues and Mechanism. Journal of Molecular Biology, 2003, 331, 829-860.	2.0	96
136	Evolution of Protein Superfamilies and Bacterial Genome Size. Journal of Molecular Biology, 2004, 336, 871-887.	2.0	95
137	The Classification and Evolution of Enzyme Function. Biophysical Journal, 2015, 109, 1082-1086.	0.2	95
138	Molecular basis of inherited diseases: a structural perspective. Trends in Genetics, 2003, 19, 505-513.	2.9	92
139	Wavelet transforms for the characterization and detection of repeating motifs. Journal of Molecular Biology, 2002, 316, 341-363.	2.0	91
140	The European Bioinformatics Institute's data resources. Nucleic Acids Research, 2010, 38, D17-D25.	6.5	90
141	X-SITE: Use of Empirically Derived Atomic Packing Preferences to Identify Favourable Interaction Regions in the Binding Sites of Proteins. Journal of Molecular Biology, 1996, 259, 175-201.	2.0	89
142	Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites. Bioinformatics, 2008, 24, i105-i111.	1.8	89
143	Rebuilding flavodoxin from $\hat{\text{Cl}}$ coordinates: A test study. Proteins: Structure, Function and Bioinformatics, 1989, 5, 170-182.	1.5	88
144	Three-dimensional structure analysis of PROSITE patterns 1 1Edited by F. E. Cohen. Journal of Molecular Biology, 1999, 286, 1673-1691.	2.0	88

#	Article	IF	CITATIONS
145	Automatic inference of protein quaternary structure from crystals. Journal of Applied Crystallography, 2003, 36, 1116-1122.	1.9	88
146	The CATH protein family database: A resource for structural and functional annotation of genomes. Proteomics, 2002, 2, 11-21.	1.3	87
147	PDBe-KB: a community-driven resource for structural and functional annotations. Nucleic Acids Research, 2020, 48, D344-D353.	6.5	87
148	Conformational change in substrate binding, catalysis and product release: an open and shut case?. FEBS Letters, 2004, 567, 67-73.	1.3	86
149	Assessment of comparative modeling in CASP2. Proteins: Structure, Function and Bioinformatics, 1997, 29, 14-28.	1.5	85
150	The European Bioinformatics Institute's data resources: towards systems biology. Nucleic Acids Research, 2004, 33, D46-D53.	6.5	85
151	Protein fold recognition. Journal of Computer-Aided Molecular Design, 1993, 7, 439-456.	1.3	83
152	Accommodating Sequence Changes in \hat{l}^2 -Hairpins in Proteins. Journal of Molecular Biology, 1993, 229, 428-447.	2.0	82
153	[5] Conformation of \hat{l}^2 hairpins in protein structures: Classification and diversity in homologous structures. Methods in Enzymology, 1991, 202, 59-82.	0.4	81
154	RTG-dependent Mitochondria-to-Nucleus Signaling Is Regulated by MKS1 and Is Linked to Formation of Yeast Prion [URE3]. Molecular Biology of the Cell, 2002, 13, 795-804.	0.9	80
155	Ligand selectivity and competition between enzymes in silico. Nature Biotechnology, 2004, 22, 1039-1045.	9.4	80
156	Minimum information about a bioactive entity (MIABE). Nature Reviews Drug Discovery, 2011, 10, 661-669.	21.5	80
157	Exploring the Evolution of Novel Enzyme Functions within Structurally Defined Protein Superfamilies. PLoS Computational Biology, 2012, 8, e1002403.	1.5	80
158	Emerging concepts in pseudoenzyme classification, evolution, and signaling. Science Signaling, 2019, 12, .	1.6	80
159	Recognizing the fold of a protein structure. Bioinformatics, 2003, 19, 1748-1759.	1.8	79
160	Towards Fully Automated Structure-based Function Prediction in Structural Genomics: A Case Study. Journal of Molecular Biology, 2007, 367, 1511-1522.	2.0	79
161	Correlation of observed fold frequency with the occurrence of local structural motifs. Journal of Molecular Biology, 1999, 287, 969-981.	2.0	78
162	Retrograde Response to Mitochondrial Dysfunction Is Separable from TOR1/2 Regulation of Retrograde Gene Expression. Journal of Biological Chemistry, 2005, 280, 42528-42535.	1.6	78

#	Article	IF	CITATIONS
163	ELIXIR: a distributed infrastructure for European biological data. Trends in Biotechnology, 2012, 30, 241-242.	4.9	78
164	Prediction of progress at last. Nature, 1991, 354, 105-106.	13.7	77
165	A study into the effects of protein binding on nucleotide conformation. Nucleic Acids Research, 1993, 21, 1369-1380.	6.5	77
166	VarSite: Disease variants and protein structure. Protein Science, 2020, 29, 111-119.	3.1	77
167	A bioinformatician's view of the metabolome. BioEssays, 2006, 28, 534-545.	1.2	76
168	The Greek key motif: extraction, classification and analysis. Protein Engineering, Design and Selection, 1993, 6, 233-245.	1.0	75
169	Regulation of Lifespan, Metabolism, and Stress Responses by the Drosophila SH2B Protein, Lnk. PLoS Genetics, 2010, 6, e1000881.	1.5	75
170	Chopping and Changing: the Evolution of the Flavin-dependent Monooxygenases. Journal of Molecular Biology, 2016, 428, 3131-3146.	2.0	75
171	Pathway evolution, structurally speaking. Current Opinion in Structural Biology, 2002, 12, 374-382.	2.6	73
172	Metal-MACiE: a database of metals involved in biological catalysis. Bioinformatics, 2009, 25, 2088-2089.	1.8	73
173	Reaction Decoder Tool (RDT): extracting features from chemical reactions. Bioinformatics, 2016, 32, 2065-2066.	1.8	7 3
174	From protein structure to biochemical function?. Journal of Structural and Functional Genomics, 2003, 4, 167-177.	1.2	72
175	Conformational analysis of protein structures derived from NMR data. Proteins: Structure, Function and Bioinformatics, 1993, 17, 232-251.	1.5	71
176	The European Bioinformatics Institute's data resources 2014. Nucleic Acids Research, 2014, 42, D18-D25.	6.5	71
177	Prediction of strand pairing in antiparallel and parallel ?-sheets using information theory. Proteins: Structure, Function and Bioinformatics, 2002, 48, 178-191.	1.5	70
178	Analysis of protein main-chain solvation as a function of secondary structure. Journal of Molecular Biology, 1991, 221, 669-691.	2.0	69
179	Understanding the molecular machinery of genetics through 3D structures. Nature Reviews Genetics, 2008, 9, 141-151.	7.7	69
180	Structural and sequence patterns in the loops of $\hat{l}^2\hat{l}\pm\hat{l}^2$ units. Protein Engineering, Design and Selection, 1987, 1, 173-181.	1.0	68

#	Article	IF	CITATIONS
181	Analysis of Domain Structural Class Using an Automated Class Assignment Protocol. Journal of Molecular Biology, 1996, 262, 168-185.	2.0	68
182	A global analysis of function and conservation of catalytic residues in enzymes. Journal of Biological Chemistry, 2020, 295, 314-324.	1.6	68
183	Morphological aspects of oligomeric protein structures. Progress in Biophysics and Molecular Biology, 2005, 89, 9-35.	1.4	67
184	Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1. Genome Biology, 2019, 20, 146.	3.8	66
185	Barrel structures in proteins: Automatic identification and classification including a sequence analysis of TIM barrels. Protein Science, 1999, 8, 2072-2084.	3.1	65
186	MACIE (Mechanism, Annotation and Classification in Enzymes): novel tools for searching catalytic mechanisms. Nucleic Acids Research, 2007, 35, D515-D520.	6.5	64
187	The Structures and Physicochemical Properties of Organic Cofactors in Biocatalysis. Journal of Molecular Biology, 2010, 403, 803-824.	2.0	63
188	Functional and modelling studies of the binding of human monoclonal anti-DNA antibodies to DNA. Molecular Immunology, 1996, 33, 471-483.	1.0	62
189	Evolution of enzymes and pathways for the biosynthesis of cofactors. Natural Product Reports, 2007, 24, 972.	5.2	62
190	Quantitative Determination of the Conformation of ATP in Aqueous Solution Using the Lanthanide Cations as Nuclear-Magnetic-Resonance Probes. FEBS Journal, 1975, 57, 135-145.	0.2	60
191	Comparison of functional annotation schemes for genomes. Functional and Integrative Genomics, 2000, 1, 56-69.	1.4	60
192	Molecular Docking for Substrate Identification: The Short-Chain Dehydrogenases/Reductases. Journal of Molecular Biology, 2008, 375, 855-874.	2.0	60
193	On the diversity of physicochemical environments experienced by identical ligands in binding pockets of unrelated proteins. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1120-1136.	1.5	59
194	The Metastasis-Promoting Phosphatase PRL-3 Shows Activity toward Phosphoinositides. Biochemistry, 2011, 50, 7579-7590.	1.2	59
195	The CATH Hierarchy Revisited—Structural Divergence in Domain Superfamilies and the Continuity of Fold Space. Structure, 2009, 17, 1051-1062.	1.6	58
196	The application of hydrogen bonding analysis in X-ray crystallography to help orientate asparagine, glutamine and histidine side chains. Protein Engineering, Design and Selection, 1995, 8, 217-224.	1.0	57
197	Using structural motif templates to identify proteins with DNA binding function. Nucleic Acids Research, 2003, 31, 2811-2823.	6.5	57
198	Microeconomic principles explain an optimal genome size in bacteria. Trends in Genetics, 2005, 21, 21-25.	2.9	57

#	Article	IF	CITATIONS
199	The CoFactor database: organic cofactors in enzyme catalysis. Bioinformatics, 2010, 26, 2496-2497.	1.8	57
200	Gene expressionâ€based drug repurposing to target aging. Aging Cell, 2018, 17, e12819.	3.0	56
201	Dihydrofolate reductase: a potential drug target in trypanosomes and leishmania. Journal of Computer-Aided Molecular Design, 1998, 12, 241-257.	1.3	55
202	An atlas of protein topology cartoons available on the world-wide web. Trends in Biochemical Sciences, 1998, 23, 35-36.	3.7	55
203	Structural Studies of Impatiens balsamina Antimicrobial Protein (Ib-AMP1). Biochemistry, 1998, 37, 983-990.	1.2	55
204	Gene3D: Structural Assignment for Whole Genes and Genomes Using the CATH Domain Structure Database. Genome Research, 2002, 12, 503-514.	2.4	55
205	Effective function annotation through catalytic residue conservation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12299-12304.	3.3	55
206	DAF-16/FoxO Directly Regulates an Atypical AMP-Activated Protein Kinase Gamma Isoform to Mediate the Effects of Insulin/IGF-1 Signaling on Aging in Caenorhabditis elegans. PLoS Genetics, 2014, 10, e1004109.	1.5	55
207	Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies. Journal of Molecular Biology, 2016, 428, 253-267.	2.0	55
208	To what extent do structural changes in catalytic metal sites affect enzyme function?. Journal of Inorganic Biochemistry, 2018, 179, 40-53.	1.5	55
209	Common genetic associations between age-related diseases. Nature Aging, 2021, 1, 400-412.	5.3	55
210	Amino Acid Changes in Disease-Associated Variants Differ Radically from Variants Observed in the 1000 Genomes Project Dataset. PLoS Computational Biology, 2013, 9, e1003382.	1.5	54
211	COVOL: An Interactive Program for Evaluating Second Virial Coefficients from the Triaxial Shape or Dimensions of Rigid Macromolecules. Biophysical Journal, 1999, 76, 2432-2438.	0.2	53
212	Missing in action: enzyme functional annotations in biological databases. Nature Chemical Biology, 2009, 5, 521-525.	3.9	53
213	Endothelial-monocyte activating polypeptide II disrupts alveolar epithelial type II to type I cell transdifferentiation. Respiratory Research, 2012, 13, 1.	1.4	53
214	Protein motifs and data-base searching. Trends in Biochemical Sciences, 1989, 14, 300-304.	3.7	51
215	Amino/aromatic interactions. Nature, 1993, 366, 413-413.	13.7	50
216	The Cath Domain Structure Database. Methods of Biochemical Analysis, 2005, 44, 249-271.	0.2	50

#	Article	IF	Citations
217	Comparison of the calcium- and magnesium-induced structural changes of troponin-C. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1978, 535, 11-24.	1.7	48
218	Toward predicting protein topology: An approach to identifying hairpins. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11157-11162.	3.3	48
219	Homology, Pathway Distance and Chromosomal Localization of the Small Molecule Metabolism Enzymes in Escherichia coli. Journal of Molecular Biology, 2002, 318, 911-932.	2.0	48
220	RTG-dependent Mitochondria-to-Nucleus Signaling Is Regulated by MKS1 and Is Linked to Formation of Yeast Prion [URE3]. Molecular Biology of the Cell, 2002, 13, 795-804.	0.9	48
221	Evolution of binding sites for zinc and calcium ions playing structural roles. Proteins: Structure, Function and Bioinformatics, 2008, 71, 813-830.	1.5	48
222	Structural Analysis of Metal Sites in Proteins: Non-heme Iron Sites as a Case Study. Journal of Molecular Biology, 2009, 388, 356-380.	2.0	48
223	MACiE: a database of enzyme reaction mechanisms. Bioinformatics, 2005, 21, 4315-4316.	1.8	47
224	Electrostatics of aquaporin and aquaglyceroporin channels correlates with their transport selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4135-4140.	3.3	47
225	VarMap: a web tool for mapping genomic coordinates to protein sequence and structure and retrieving protein structural annotations. Bioinformatics, 2019, 35, 4854-4856.	1.8	46
226	PDBe-KB: collaboratively defining the biological context of structural data. Nucleic Acids Research, 2022, 50, D534-D542.	6.5	46
227	Genome and proteome annotation: organization, interpretation and integration. Journal of the Royal Society Interface, 2009, 6, 129-147.	1.5	45
228	Contemporary approaches to protein structure classification. BioEssays, 1998, 20, 884-891.	1.2	44
229	FunTree: a resource for exploring the functional evolution of structurally defined enzyme superfamilies. Nucleic Acids Research, 2012, 40, D776-D782.	6.5	44
230	The Chemistry of Protein Catalysis. Journal of Molecular Biology, 2007, 372, 1261-1277.	2.0	43
231	Comparisons of Allergenic and Metazoan Parasite Proteins: Allergy the Price of Immunity. PLoS Computational Biology, 2015, 11, e1004546.	1.5	43
232	Fine-tuning autophagy maximises lifespan and is associated with changes in mitochondrial gene expression in Drosophila. PLoS Genetics, 2020, 16, e1009083.	1.5	43
233	PROCOGNATE: a cognate ligand domain mapping for enzymes. Nucleic Acids Research, 2007, 36, D618-D622.	6.5	42
234	Adenosine Triphosphate (ATP) Is a Candidate Signaling Molecule in the Mitochondria-to-Nucleus Retrograde Response Pathway. Genes, 2013, 4, 86-100.	1.0	42

#	Article	IF	Citations
235	<scp>PDBsum /scp> extras: <scp>SARSâ€CoV</scp>â€2 and <scp>AlphaFold</scp> models. Protein Science, 2022, 31, 283-289.</scp>	3.1	42
236	Nuclear magnetic resonance investigation of the conformation of nicotinamide mononucleotide in aqueous solution. Journal of the American Chemical Society, 1975, 97, 2845-2850.	6.6	41
237	The $(\hat{l}^2\hat{l}_\pm)$ 8 glycosidases: sequence and structure analyses suggest distant evolutionary relationships. Protein Engineering, Design and Selection, 2001, 14, 845-855.	1.0	41
238	Computational analysis of \hat{A} -helical membrane protein structure: implications for the prediction of 3D structural models. Protein Engineering, Design and Selection, 2004, 17, 613-624.	1.0	41
239	Intestinal Fork Head Regulates Nutrient Absorption and Promotes Longevity. Cell Reports, 2017, 21, 641-653.	2.9	41
240	Long loops in proteins. Protein Engineering, Design and Selection, 1995, 8, 1093-1101.	1.0	40
241	Molecular Basis for DPY-30 Association to COMPASS-like and NURF Complexes. Structure, 2014, 22, 1821-1830.	1.6	40
242	Toward the detection and validation of repeats in protein structure. Proteins: Structure, Function and Bioinformatics, 2004, 57, 365-380.	1.5	39
243	The Complement of Enzymatic Sets in Different Species. Journal of Molecular Biology, 2005, 349, 745-763.	2.0	39
244	TORC2 Signaling Is Antagonized by Protein Phosphatase 2A and the Far Complex in <i>Saccharomyces cerevisiae</i> . Genetics, 2012, 190, 1325-1339.	1.2	39
245	Protein structure prediction. Current Opinion in Biotechnology, 1998, 9, 383-389.	3.3	38
246	Evolutionary Models for Formation of Network Motifs and Modularity in the Saccharomyces Transcription Factor Network. PLoS Computational Biology, 2007, 3, e198.	1.5	38
247	Functional conservation in genes and pathways linking ageing and immunity. Immunity and Ageing, 2021, 18, 23.	1.8	38
248	Atomic environments of arginine side chains in proteins. Protein Engineering, Design and Selection, 1993, 6, 247-259.	1.0	37
249	Non-randomness in side-chain packing: the distribution of interplanar angles. , 1997, 29, 370-380.		37
250	A Novel Degron-mediated Degradation of the RTG Pathway Regulator, Mks1p, by SCFGrr1. Molecular Biology of the Cell, 2005, 16, 4893-4904.	0.9	37
251	The widespread increase in inter-individual variability of gene expression in the human brain with age. Aging, 2019, 11, 2253-2280.	1.4	37
252	Towards meeting the paracelsus challenge: The design, synthesis, and characterization of paracelsin-43, an $\hat{1}$ ±-helical protein with over 50% sequence identity to an all- $\hat{1}$ 2 protein., 1996, 24, 502-513.		36

#	Article	IF	Citations
253	1H NMR structure of an antifungal î³-thionin protein Slî±1: Similarity to scorpion toxins. , 1998, 32, 334-349.		36
254	Relationship between the tissue-specificity of mouse gene expression and the evolutionary origin and function of the proteins. Genome Biology, 2005, 6, R56.	13.9	36
255	Understanding enzyme function evolution from a computational perspective. Current Opinion in Structural Biology, 2017, 47, 131-139.	2.6	36
256	Topological and stereochemical restrictions in \hat{l}^2 -sandwich protein structures. Protein Engineering, Design and Selection, 1993, 6, 461-470.	1.0	35
257	NMR and crystallography â€" complementary approaches to structure determination. Trends in Biotechnology, 1994, 12, 149-153.	4.9	35
258	Protein side-chain conformation: a systematic variation of χ1mean values with resolution – a consequence of multiple rotameric states?. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 994-1004.	2.5	35
259	A computer system to perform structure comparison using TOPS representations of protein structure. Computers & Chemistry, 2001, 26, 23-30.	1.2	35
260	Computational biology for ageing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 51-63.	1.8	35
261	The history of the CATH structural classification of protein domains. Biochimie, 2015, 119, 209-217.	1.3	34
262	Drug repurposing for aging research using model organisms. Aging Cell, 2017, 16, 1006-1015.	3.0	34
263	Temporal changes in the gene expression heterogeneity during brain development and aging. Scientific Reports, 2020, 10, 4080.	1.6	34
264	Analysis of binding site similarity, small-molecule similarity and experimental binding profiles in the human cytosolic sulfotransferase family. Bioinformatics, 2007, 23, e104-e109.	1.8	33
265	The evolution of enzyme function in the isomerases. Current Opinion in Structural Biology, 2014, 26, 121-130.	2.6	33
266	Structural analysis of pathogenic mutations in the <i>DYRK1A</i> gene in patients with developmental disorders. Human Molecular Genetics, 2017, 26, ddw409.	1.4	33
267	The CATH protein family database: a resource for structural and functional annotation of genomes. Proteomics, 2002, 2, 11-21.	1.3	32
268	Multiple Solution Conformations of the Integrin-Binding Cyclic Pentapeptide Cyclo(-Ser-d-Leu-Asp-Val-Pro-). Analysis of the (phi,psi) Space Available to Cyclic Pentapeptides. FEBS Journal, 1996, 242, 352-362.	0.2	31
269	Characterizing the complexity of enzymes on the basis of their mechanisms and structures with a bioâ€computational analysis. FEBS Journal, 2011, 278, 3835-3845.	2,2	30
270	Using the drug-protein interactome to identify anti-ageing compounds for humans. PLoS Computational Biology, 2019, 15, e1006639.	1.5	30

#	Article	IF	Citations
271	Design, synthesis and structure of a zinc finger with an artificial \hat{l}^2 -turn. Journal of Molecular Biology, 1998, 279, 973-986.	2.0	29
272	SCOPEC: a database of protein catalytic domains. Bioinformatics, 2004, 20, i130-i136.	1.8	29
273	Prediction of Protein Function from Structure: Insights from Methods for the Detection of Local Structural Similarities. BioTechniques, 2005, 38, 847-851.	0.8	29
274	Protein structure and phenotypic analysis of pathogenic and population missense variants in <i>STXBP1</i> . Molecular Genetics & Enomic Medicine, 2017, 5, 495-507.	0.6	29
275	Correcting for sequence biases in present/absent calls. Genome Biology, 2007, 8, R125.	13.9	28
276	A novel approach to the recognition of protein architecture from sequence using fourier analysis and neural networks. Proteins: Structure, Function and Bioinformatics, 2002, 50, 290-302.	1.5	27
277	Analysing variation in <i><scp>D</scp>rosophila</i> >aging across independent experimental studies: a metaâ€analysis of survival data. Aging Cell, 2013, 12, 917-922.	3.0	27
278	MDL-1, a growth- and tumor-suppressor, slows aging and prevents germline hyperplasia and hypertrophy in C. elegans. Aging, 2014, 6, 98-117.	1.4	27
279	Recurrence of a binding motif?. Nature, 1993, 362, 299-299.	13.7	26
280	Cognate Ligand Domain Mapping for Enzymes. Journal of Molecular Biology, 2006, 364, 836-852.	2.0	26
281	Integrating population variation and protein structural analysis to improve clinical interpretation of missense variation: application to the WD40 domain. Human Molecular Genetics, 2016, 25, 927-935.	1.4	26
282	A comparison of three theoretical approaches to the study of side-chain interactions in proteins. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 2619.	1.7	25
283	Influence of secondary structure on the hydration of serine, threonine and tyrosine residues in proteins. Protein Engineering, Design and Selection, 1990, 3, 495-508.	1.0	24
284	A Ligand-centric Analysis of the Diversity and Evolution of Protein–Ligand Relationships in E.coli. Journal of Molecular Biology, 2005, 347, 415-436.	2.0	24
285	The new science of ageing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 6-8.	1.8	24
286	Unlocking the potential of survival data for model organisms through a new database and online analysis platform: <scp>S</scp> urv <scp>C</scp> urv. Aging Cell, 2013, 12, 910-916.	3.0	24
287	Electrostatic interactions in proteins. Nature, 1982, 295, 13-14.	13.7	23
288	Protein-protein recognition via side-chain interactions. Biochemical Society Transactions, 1988, 16, 927-930.	1.6	23

#	Article	IF	Citations
289	Amino acid sequence templates derived from recurrent turn motifs in proteins: critical evaluation of their predictive power. Protein Engineering, Design and Selection, 1989, 3, 23-27.	1.0	23
290	Gene3D: structural assignments for the biologist and bioinformaticist alike. Nucleic Acids Research, 2003, 31, 469-473.	6.5	23
291	Ranking Enzyme Structures in the PDB by Bound Ligand Similarity to Biological Substrates. Structure, 2018, 26, 565-571.e3.	1.6	23
292	Evaluation of a knowledge-based potential of mean force for scoring docked protein-ligand complexes. Journal of Computational Chemistry, 2001, 22, 673-688.	1.5	22
293	Target Selection and Determination of Function in Structural Genomics. IUBMB Life, 2003, 55, 249-255.	1.5	22
294	Exploring the chemistry and evolution of the isomerases. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1796-1801.	3.3	22
295	Detecting DNA-binding helix-turn-helix structural motifs using sequence and structure information. Nucleic Acids Research, 2005, 33, 2129-2140.	6.5	21
296	Relating tissue specialization to the differentiation of expression of singleton and duplicate mouse proteins. Genome Biology, 2006, 7, R89.	13.9	21
297	The influence of tertiary structure on secondary structure prediction. FEBS Letters, 1985, 188, 59-62.	1.3	20
298	Lessons from analyzing protein structures. Current Opinion in Structural Biology, 1992, 2, 888-894.	2.6	20
299	Finding enzyme cofactors in Protein Data Bank. Bioinformatics, 2019, 35, 3510-3511.	1.8	20
300	New Tools and Resources for Analysing Protein Structures and Their Interactions. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 1132-1138.	2.5	19
301	Inferring Protein Function from Structure. Methods of Biochemical Analysis, 2005, , 387-407.	0.2	19
302	An Analysis of Intron Positions in Relation to Nucleotides, Amino Acids, and Protein Secondary Structure. Journal of Molecular Biology, 2006, 359, 238-247.	2.0	19
303	Erratum to "Diapause-associated metabolic traits reiterated in long-lived daf-2 mutants in the nematode Caenorhabditis elegans―[Mech. Ageing Dev. 127 (5) (2006) 458–472]. Mechanisms of Ageing and Development, 2006, 127, 922-936.	2.2	19
304	The Protein Feature Ontology: a tool for the unification of protein feature annotations. Bioinformatics, 2008, 24, 2767-2772.	1.8	19
305	The EBI enzyme portal. Nucleic Acids Research, 2013, 41, D773-D780.	6.5	19
306	Identifying pseudoenzymes using functional annotation: pitfalls of common practice. FEBS Journal, 2020, 287, 4128-4140.	2.2	19

#	Article	IF	CITATIONS
307	Conformation of terminal regions in proteins. Nature, 1982, 298, 296-297.	13.7	18
308	Modelling by homology. Current Opinion in Structural Biology, 1991, 1, 219-223.	2.6	18
309	Factors limiting the performance of predictionâ€based fold recognition methods. Protein Science, 1999, 8, 750-759.	3.1	18
310	Solution structure of a biologically active cyclic LDV peptide analogue containing a type Il′βâ€ŧurn mimetic. International Journal of Peptide and Protein Research, 1996, 47, 427-436.	0.1	18
311	Peptide–protein interactions: an overview. Quarterly Reviews of Biophysics, 1993, 26, 333-363.	2.4	17
312	A study of structural determinants in the interleukin-1 fold. Protein Engineering, Design and Selection, 1993, 6, 711-715.	1.0	17
313	WSsas: a web service for the annotation of functional residues through structural homologues. Bioinformatics, 2009, 25, 1192-1194.	1.8	17
314	Data-driven identification of ageing-related diseases from electronic health records. Scientific Reports, 2021, 11, 2938.	1.6	17
315	Conformational Variation in Enzyme Catalysis: A Structural Study on Catalytic Residues. Journal of Molecular Biology, 2022, 434, 167517.	2.0	17
316	A novel method for the modelling of peptide ligands to their receptors. Protein Engineering, Design and Selection, 1991, 4, 251-261.	1.0	16
317	Integrating biological data through the genome. Human Molecular Genetics, 2006, 15, R81-R87.	1.4	16
318	Exploring Chemical Biosynthetic Design Space with Transform-MinER. ACS Synthetic Biology, 2019, 8, 2494-2506.	1.9	16
319	Proton magnetic resonance study of troponin-C. FEBS Letters, 1976, 61, 218-222.	1.3	15
320	Molecular modelling and epitope prediction of gp29 from lymphatic filariae. Molecular and Biochemical Parasitology, 1993, 58, 145-153.	0.5	15
321	A template search reveals mechanistic similarities and differences in \hat{l}^2 -ketoacyl synthases (KAS) and related enzymes. Proteins: Structure, Function and Bioinformatics, 2003, 52, 427-435.	1.5	15
322	A practical and robust sequence search strategy for structural genomics target selection. Bioinformatics, 2004, 20, 2288-2295.	1.8	15
323	Estimation and correction of non-specific binding in a large-scale spike-in experiment. Genome Biology, 2007, 8, R126.	13.9	15
324	The (non)malignancy of cancerous amino acidic substitutions. Proteins: Structure, Function and Bioinformatics, 2010, 78, 518-529.	1.5	15

#	Article	IF	Citations
325	Comparison of the mammalian insulin signalling pathway to invertebrates in the context of FOXO-mediated ageing. Bioinformatics, 2014, 30, 2999-3003.	1.8	15
326	Identifying Potential Ageing-Modulating Drugs In Silico. Trends in Endocrinology and Metabolism, 2019, 30, 118-131.	3.1	15
327	An extension of secondary structure prediction towards the production of tertiary structure. FEBS Letters, 1991, 280, 141-146.	1.3	14
328	Sequences and topology. Current Opinion in Structural Biology, 2003, 13, 341-343.	2.6	14
329	Metabolic innovations towards the human lineage. BMC Evolutionary Biology, 2008, 8, 247.	3.2	14
330	Mapping Human Metabolic Pathways in the Small Molecule Chemical Space. Journal of Chemical Information and Modeling, 2009, 49, 2272-2289.	2.5	14
331	1,000 structures and more from the MCSG. BMC Structural Biology, 2011, 11, 2.	2.3	14
332	Current challenges in genome annotation through structural biology and bioinformatics. Current Opinion in Structural Biology, 2012, 22, 594-601.	2.6	14
333	cuRRBS: simple and robust evaluation of enzyme combinations for reduced representation approaches. Nucleic Acids Research, 2017, 45, 11559-11569.	6.5	14
334	The shape of things to come?. Nature, 1988, 335, 10-11.	13.7	13
335	Analysis of metabolic networks using a pathway distance metric through linear programming. Metabolic Engineering, 2003, 5, 211-219.	3.6	13
336	SurvCurv database and online survival analysis platform update. Bioinformatics, 2015, 31, 3878-3880.	1.8	13
337	Using Answer Set Programming to Integrate RNA Expression with Signalling Pathway Information to Infer How Mutations Affect Ageing. PLoS ONE, 2012, 7, e50881.	1.1	13
338	Characterising Complex Enzyme Reaction Data. PLoS ONE, 2016, 11, e0147952.	1.1	13
339	The Geometry of Interactions between Catalytic Residues and their Substrates. Journal of Molecular Biology, 2007, 369, 1140-1152.	2.0	12
340	A community proposal to integrate structural bioinformatics activities in ELIXIR (3D-Bioinfo) Tj ETQq0 0 0 rgBT /0	Overlock 1	.0 Тf 50 142 Т
341	PoreLogo: a new tool to analyse, visualize and compare channels in transmembrane proteins. Bioinformatics, 2009, 25, 3183-3184.	1.8	11
342	Exploring the Biological and Chemical Complexity of the Ligases. Journal of Molecular Biology, 2014, 426, 2098-2111.	2.0	11

#	Article	lF	Citations
343	Modelling protein unfolding: a solvent insertion protocol. Faraday Discussions, 1996, 103, 339.	1.6	10
344	Transform-MinER: transforming molecules in enzyme reactions. Bioinformatics, 2018, 34, 3597-3599.	1.8	10
345	GRaSP: a graph-based residue neighborhood strategy toÂpredict binding sites. Bioinformatics, 2020, 36, i726-i734.	1.8	10
346	Annotations for all by all - the BioSapiens network. Genome Biology, 2009, 10, 401.	13.9	9
347	Structural analysis of pathogenic missense mutations in <i>GABRA2</i> and identification of a novel de novo variant in the desensitization gate. Molecular Genetics & Enomic Medicine, 2020, 8, e1106.	0.6	9
348	Cell type-specific modulation of healthspan by Forkhead family transcription factors in the nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
349	Activating transcription factor 4-dependent lactate dehydrogenase activation as a protective response to amyloid beta toxicity. Brain Communications, 2021, 3, fcab053.	1.5	9
350	Assessment of comparative modeling in CASP2. Proteins: Structure, Function and Bioinformatics, 1997, 29, 14-28.	1.5	9
351	Inferring protein function from structure. Methods of Biochemical Analysis, 2003, 44, 387-407.	0.2	9
352	Tackling a loopy problem. Nature, 1990, 343, 411-412.	13.7	8
353	Structure prediction and modelling. Current Opinion in Biotechnology, 1991, 2, 512-519.	3.3	8
354	Exploring Enzyme Evolution from Changes in Sequence, Structure, and Function. Methods in Molecular Biology, 2019, 1851, 263-275.	0.4	8
355	Protein–DNA Interactions: The Story so Far and a New Method for Prediction. Comparative and Functional Genomics, 2003, 4, 428-431.	2.0	7
356	The Hans Neurath Award lecture of The Protein Society: Proteinsâ€"A testament to physics, chemistry, and evolution. Protein Science, 2001, 10, 3-11.	3.1	7
357	An automated protocol for modelling peptide substrates to proteases. BMC Bioinformatics, 2020, 21, 586.	1.2	7
358	GRaSP-web: a machine learning strategy to predict binding sites based on residue neighborhood graphs. Nucleic Acids Research, 2022, 50, W392-W397.	6.5	7
359	Preliminary Analysis of Water Molecule Distributions in Proteins. Molecular Simulation, 1989, 3, 167-182.	0.9	6
360	Iditis: Protein Structure Database. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 1071-1077.	2.5	6

#	Article	ΙF	CITATIONS
361	Domain–ligand mapping for enzymes. Journal of Molecular Recognition, 2010, 23, 194-208.	1.1	6
362	Abstracting knowledge from the protein data bank. Biopolymers, 2013, 99, 183-188.	1.2	6
363	Transposable Element Landscape in <i>Drosophila</i> Populations Selected for Longevity. Genome Biology and Evolution, 2021, 13, .	1.1	6
364	Transcriptomic profiling of long- and short-lived mutant mice implicates mitochondrial metabolism in ageing and shows signatures of normal ageing in progeroid mice. Mechanisms of Ageing and Development, 2021, 194, 111437.	2.2	6
365	In conversation with Janet Thornton. FEBS Journal, 2020, 287, 4106-4113.	2.2	5
366	Capturing the geometry, function, and evolution of enzymes with <scp>3D</scp> templates. Protein Science, 2022, 31, .	3.1	5
367	Introduction. Bioinformatics: from molecules to systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 389-391.	1.8	4
368	Variation of geometrical and physicochemical properties in protein binding pockets and their ligands. BMC Bioinformatics, 2007, 8, .	1.2	4
369	Cell Proliferation and Migration Are Modulated by Cdk-1-Phosphorylated Endothelial-Monocyte Activating Polypeptide II. PLoS ONE, 2012, 7, e33101.	1.1	4
370	Transcriptional feedback in the insulin signalling pathway modulates ageing in both Caenorhabditis elegans and Drosophila melanogaster. Molecular BioSystems, 2013, 9, 1756.	2.9	4
371	A computational and structural analysis of germline and somatic variants affecting the DDR mechanism, and their impact on human diseases. Scientific Reports, 2021, 11, 14268.	1.6	4
372	The fine details of evolution. Biochemical Society Transactions, 2009, 37, 723-726.	1.6	3
373	Impact of Structural Observables From Simulations to Predict the Effect of Single-Point Mutations in MHC Class II Peptide Binders. Frontiers in Molecular Biosciences, 2021, 8, 636562.	1.6	3
374	The CATH protein family database: A resource for structural and functional annotation of genomes. Proteomics, 2002, 2, 11.	1.3	3
375	PROTEIN MOTIFS AND DATA-BASE SEARCHING. , 1990, , 153-161.		3
376	Modelling the interactions of protein side-chains. Molecular Engineering, 1995, 5, 89-105.	0.2	2
377	Data Curation in Biology - Past, Present and Future. Nature Precedings, 2009, , .	0.1	2
378	LigSearch: a knowledge-based web server to identify likely ligands for a protein target. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2395-2402.	2.5	2

#	Article	IF	Citations
379	Anna Tramontano 1957–2017. Nature Structural and Molecular Biology, 2017, 24, 431-432.	3.6	2
380	The Enzyme Portal: an integrative tool for enzyme information and analysis. FEBS Journal, 2021, , .	2.2	2
381	Protein–protein interfaces: Analysis of amino acid conservation in homodimers. , 2001, 42, 108.		2
382	Proteins: interaction at a distance. IUCrJ, 2015, 2, 609-610.	1.0	2
383	Srinivasan (1962–2021) in Bioinformatics and beyond. Bioinformatics, 2022, 38, 2377-2379.	1.8	2
384	Prediction of Protein Structure from Amino Acid Sequence. Biochemical Society Transactions, 1978, 6, 1119-1123.	1.6	1
385	Shared structural motif in proteins. Nature, 1993, 365, 21-21.	13.7	1
386	Protein-DNA Interactions. Biochemical Society Transactions, 1999, 27, A88-A88.	1.6	1
387	A revised set of potentials for \hat{l}^2 -turn formation in proteins. , 1994, 3, 2207.		1
388	Hydration of Amino Acids in Protein Crystals. , 1993, , 63-97.		1
389	The European Bioinformatics Institute: Leading the bioinformatics revolution. Biochemist, 2004, 26, 33-38.	0.2	1
390	Modelling the Interactions of Protein Side-Chains. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1995, , 119-135.	0.2	1
391	Protein Engineering '87â€"conference report. Protein Engineering, Design and Selection, 1987, 1, 267-270.	1.0	0
392	THE EVOLUTION OF ENZYME STRUCTURE AND FUNCTION. Biochemical Society Transactions, 2000, 28, A53-A53.	1.6	0
393	Structural bioinformatics: from protein structure to function. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 165-179.	0.1	0
394	The Impact of Structural Proteomics on Macromolecular Structure Databases., 2008,, 29-49.		0
395	Molecular Sociology., 2010,, 23-28.		0
396	Shouldn't enantiomeric purity be included in the 'minimum information about a bioactive entity? Response from the MIABE group. Nature Reviews Drug Discovery, 2012, 11, 730-730.	21.5	0

#	Article	IF	CITATIONS
397	The Evolution of Enzyme Mechanisms and Functional Diversity. Biophysical Journal, 2015, 108, 34a.	0.2	O
398	Editorial overview: Catalysis and regulation. Current Opinion in Structural Biology, 2017, 47, vi-viii.	2.6	0
399	Molecular Sociology., 2003,, 21-26.		0
400	Modelling Antibody Combining Sites: A Review. Novartis Foundation Symposium, 1991, 159, 55-71.	1.2	0
401	Protein Function Prediction from Structure in Structural Genomics and its Contribution to the Study of Health and Disease. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 201-215.	0.5	O
402	Case Studies: Function Predictions of Structural Genomics Results. , 2009, , 273-291.		0
403	A novel computational approach for predicting complex phenotypes in Drosophila (starvation-sensitive and sterile) by deriving their gene expression signatures from public data. PLoS ONE, 2020, 15, e0240824.	1.1	O
404	Title is missing!. , 2020, 15, e0240824.		0
405	Title is missing!. , 2020, 15, e0240824.		0
406	Title is missing!. , 2020, 15, e0240824.		0
407	Title is missing!. , 2020, 15, e0240824.		0
408	Comparison of functional annotation schemes for genomes. Functional and Integrative Genomics, 2000, 1, 56-69.	1.4	0