Philippe Schmitt-Kopplin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7575526/publications.pdf

Version: 2024-02-01

499 papers 25,663 citations

81 h-index 131 g-index

523 all docs

523 docs citations

times ranked

523

28290 citing authors

#	Article	IF	CITATIONS
1	MS4A15 drives ferroptosis resistance through calcium-restricted lipid remodeling. Cell Death and Differentiation, 2022, 29, 670-686.	5.0	35
2	Elucidation of the non-volatile fingerprint in oven headspace vapor from bread roll baking by ultra-high resolution mass spectrometry. Food Chemistry, 2022, 374, 131618.	4.2	3
3	Yeast interaction on Chardonnay wine composition: Impact of strain and inoculation time. Food Chemistry, 2022, 374, 131732.	4.2	8
4	Assessment of a New Copper-Based Formulation to Control Esca Disease in Field and Study of Its Impact on the Vine Microbiome, Vine Physiology and Enological Parameters of the Juice. Journal of Fungi (Basel, Switzerland), 2022, 8, 151.	1.5	7
5	Mining for Active Molecules in Probiotic Supernatant by Combining Non-Targeted Metabolomics and Immunoregulation Testing. Metabolites, 2022, 12, 35.	1.3	3
6	Mycorrhiza-Tree-Herbivore Interactions: Alterations in Poplar Metabolome and Volatilome. Metabolites, 2022, 12, 93.	1.3	12
7	Non-Targeted Metabolomic Analysis of the Kombucha Production Process. Metabolites, 2022, 12, 160.	1.3	8
8	Microbial Interactions in Kombucha through the Lens of Metabolomics. Metabolites, 2022, 12, 235.	1.3	6
9	Molecular composition of dissolved organic matter in saline lakes of the Qing-Tibetan Plateau. Organic Geochemistry, 2022, 167, 104400.	0.9	12
10	Dihydrogen phosphate anion boosts the detection of sugars in electrospray ionization mass spectrometry: A combined experimental and computational investigation. Rapid Communications in Mass Spectrometry, 2022, 36, e9283.	0.7	0
11	Bezafibrate Reduces Elevated Hepatic Fumarate in Insulin-Deficient Mice. Biomedicines, 2022, 10, 616.	1.4	5
12	Feature Selection Pipelines with Classification for Non-targeted Metabolomics Combining the Neural Network and Genetic Algorithm. Analytical Chemistry, 2022, 94, 5474-5482.	3.2	1
13	Sulfonation Reactions behind the Fate of White Wine's Shelf-Life. Metabolites, 2022, 12, 323.	1.3	3
14	Open Search of Peptide Glycation Products from Tandem Mass Spectra. Analytical Chemistry, 2022, 94, 5953-5961.	3.2	1
15	Kapillarelektrophorese., 2022,, 299-325.		0
16	Molecular and spectroscopic changes of peat-derived organic matter following photo-exposure: Effects on heteroatom composition of DOM. Science of the Total Environment, 2022, 838, 155790.	3.9	12
17	Substantial Biogeochemical and Biomolecular Processing of Dissolved Organic Matter in an Anticyclonic Eddy in the Northern South China Sea Down to Bathypelagic Depths. Frontiers in Marine Science, 2022, 9, .	1.2	0
18	Archeochemistry reveals the first steps into modern industrial brewing. Scientific Reports, 2022, 12, .	1.6	1

#	Article	IF	Citations
19	Synthesis, Physicochemical Characterization, and Antibacterial Performance of Silverâ€"Lactoferrin Complexes. International Journal of Molecular Sciences, 2022, 23, 7112.	1.8	7
20	MobilityTransformR: an R package for effective mobility transformation of CE-MS data. Bioinformatics, 2022, 38, 4044-4045.	1.8	4
21	Ragweed plants grown under elevated CO ₂ levels produce pollen which elicit stronger allergic lung inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1718-1730.	2.7	35
22	Unraveling the chemodiversity of halogenated disinfection by-products formed during drinking water treatment using target and non-target screening tools. Journal of Hazardous Materials, 2021, 401, 123681.	6.5	40
23	The old, unique C1 chondrite Flensburg – Insight into the first processes of aqueous alteration, brecciation, and the diversity of water-bearing parent bodies and lithologies. Geochimica Et Cosmochimica Acta, 2021, 293, 142-186.	1.6	28
24	Metabolomics in Brewing Research. , 2021, , 116-128.		2
25	Analytical Challenges and Strategies to Decipher the Maillard Reaction Network. , 2021, , 155-173.		2
26	Investigation of fennel protein extracts by shot-gun Fourier transform ion cyclotron resonance mass spectrometry. Food Research International, 2021, 139, 109919.	2.9	1
27	IL-17 controls central nervous system autoimmunity through the intestinal microbiome. Science Immunology, 2021, 6, .	5.6	67
28	Asc-1 regulates white versus beige adipocyte fate in a subcutaneous stromal cell population. Nature Communications, 2021, 12, 1588.	5.8	17
29	Data processing for fennel protein characterization by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Data in Brief, 2021, 35, 106960.	0.5	O
30	Data Processing Optimization in Untargeted Metabolomics of Urine Using Voigt Lineshape Model Non-Linear Regression Analysis. Metabolites, 2021, 11, 285.	1.3	7
31	The impact and recovery of asteroid 2018 LA. Meteoritics and Planetary Science, 2021, 56, 844-893.	0.7	21
32	Microbial Hotspots in Lithic Microhabitats Inferred from DNA Fractionation and Metagenomics in the Atacama Desert. Microorganisms, 2021, 9, 1038.	1.6	19
33	Longitudinal Profiles of Dietary and Microbial Metabolites in Formula- and Breastfed Infants. Frontiers in Molecular Biosciences, 2021, 8, 660456.	1.6	19
34	Thermal History of Asteroid Parent Bodies Is Reflected in Their Metalorganic Chemistry. Astrophysical Journal Letters, 2021, 915, L7.	3.0	7
35	Exploring the link between molecular cloud ices and chondritic organic matter in laboratory. Nature Communications, 2021, 12, 3538.	5.8	14
36	Molecular characterization of sequence-driven peptide glycation. Scientific Reports, 2021, 11, 13294.	1.6	2

#	Article	lF	CITATIONS
37	Enhanced Access to the Health-Related Skin Metabolome by Fast, Reproducible and Non-Invasive WET PREP Sampling. Metabolites, 2021, 11, 415.	1.3	6
38	Chemical composition overview on two organic residues from the inner part of an archaeological bronze vessel from Cumae (Italy) by GC–MS and FTICR MS analyses. European Physical Journal Plus, 2021, 136, 1.	1.2	3
39	Linking the $\langle i \rangle$ FTO $\langle j i \rangle$ obesity rs1421085 variant circuitry to cellular, metabolic, and organismal phenotypes in vivo. Science Advances, 2021, 7, .	4.7	19
40	On the Trail of the German Purity Law: Distinguishing the Metabolic Signatures of Wheat, Corn and Rice in Beer. Frontiers in Chemistry, 2021, 9, 715372.	1.8	9
41	Seasonal transformations of dissolved organic matter and organic phosphorus in a polymictic basin: Implications for redox-driven eutrophication. Chemical Geology, 2021, 573, 120212.	1.4	17
42	The role of fecal sulfur metabolome in inflammatory bowel diseases. International Journal of Medical Microbiology, 2021, 311, 151513.	1.5	40
43	Exploring the chemical space of white wine antioxidant capacity: A combined DPPH, EPR and FT-ICR-MS study. Food Chemistry, 2021, 355, 129566.	4.2	30
44	Sulfur ion irradiation experiments simulating space weathering of Solar System body surfaces. Astronomy and Astrophysics, 2021, 655, A74.	2.1	10
45	Molecular and optical characterization reveals the preservation and sulfurization of chemically diverse porewater dissolved organic matter in oligohaline and brackish Chesapeake Bay sediments. Organic Geochemistry, 2021, 161, 104324.	0.9	11
46	Hidden in its color: A molecular-level analysis of the beer's Maillard reaction network. Food Chemistry, 2021, 361, 130112.	4.2	15
47	Amplifying and Fine-Tuning Rsm sRNAs Expression and Stability to Optimize the Survival of Pseudomonas brassicacerum in Nutrient-Poor Environments. Microorganisms, 2021, 9, 250.	1.6	5
48	Molecular changes among non-volatile disinfection by-products between drinking water treatment and consumer taps. Environmental Science: Water Research and Technology, 2021, 7, 2335-2345.	1.2	5
49	Gfi1 Loss Protects against Two Models of Induced Diabetes. Cells, 2021, 10, 2805.	1.8	2
50	Unveiling microbial preservation under hyperacidic and oxidizing conditions in the Oligocene Rio Tinto deposit. Scientific Reports, 2021, 11, 21543.	1.6	2
51	Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis. Cell Metabolism, 2021, 33, 2355-2366.e8.	7.2	40
52	Novel Extraction Method for Combined Lipid and Metal Speciation From Caenorhabditis elegans With Focus on Iron Redox Status and Lipid Profiling. Frontiers in Chemistry, 2021, 9, 788094.	1.8	4
53	Preferential Sorption of Tannins at Aluminum Oxide Affects the Electron Exchange Capacities of Dissolved and Sorbed Humic Acid Fractions. Environmental Science & Exchange Capacities of 1837-1847.	4.6	16
54	GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Central Science, 2020, 6, 41-53.	5. 3	551

#	Article	IF	Citations
55	Quantification of manganous ions in wine by NMR relaxometry. Talanta, 2020, 209, 120561.	2.9	11
56	A chemical and microbial characterization of selected mud volcanoes in Trinidad reveals pathogens introduced by surface water and rain water. Science of the Total Environment, 2020, 707, 136087.	3.9	5
57	Comprehensive Analysis of the <i>Alternaria</i> Mycobolome Using Mass Spectrometry Based Metabolomics. Molecular Nutrition and Food Research, 2020, 64, e1900558.	1.5	26
58	Molecular differences between water column and sediment pore water SPE-DOM in ten Swedish boreal lakes. Water Research, 2020, 170, 115320.	5. 3	45
59	Disturbed gut microbiota and bile homeostasis in <i>Giardia</i> -infected mice contributes to metabolic dysregulation and growth impairment. Science Translational Medicine, 2020, 12, .	5.8	24
60	Coprecipitation Synthesis of Fe-Doped TiO2 from Various Commercial TiO2 for Photocatalytic Reaction. International Journal of Environmental Research, 2020, 14, 605-613.	1.1	6
61	Optical Properties and Photochemical Transformation of the Dissolved Organic Matter Released by Sargassum. Frontiers in Marine Science, 2020, 7, .	1.2	8
62	Influence of the UV/H ₂ O ₂ Advanced Oxidation Process on Dissolved Organic Matter and the Connection between Elemental Composition and Disinfection Byproduct Formation. Environmental Science & Environme	4.6	60
63	Comprehensive Vitamer Profiling of Folate Mono- and Polyglutamates in Baker's Yeast (Saccharomyces) Tj E	ТQ _{¶.3} 1 0.	78 4 314 rgE⊤
64	Chemical fractionation of organic matter and organic phosphorus extractions from freshwater lake sediment. Analytica Chimica Acta, 2020, 1130, 29-38.	2.6	17
65	The N-acyl homoserine-lactone depleted Rhizobium radiobacter mutant RrF4NM13 shows reduced growth-promoting and resistance-inducing activities in mono- and dicotyledonous plants. Journal of Plant Diseases and Protection, 2020, 127, 769-781.	1.6	16
66	Investigating the function of Pre-Pottery Neolithic stone troughs from Göbekli Tepe – An integrated approach. Journal of Archaeological Science: Reports, 2020, 34, 102618.	0.2	7
67	Water-Based Extraction of Bioactive Principles from Blackcurrant Leaves and Chrysanthellum americanum: A Comparative Study. Foods, 2020, 9, 1478.	1.9	14
68	The fall, recovery, classification, and initial characterization of the Hamburg, Michigan H4 chondrite. Meteoritics and Planetary Science, 2020, 55, 2341-2359.	0.7	4
69	An Enhanced Isotopic Fine Structure Method for Exact Mass Analysis in Discovery Metabolomics: FIA-CASI-FTMS. Journal of the American Society for Mass Spectrometry, 2020, 31, 2025-2034.	1.2	13
70	Decomposing the molecular complexity of brewing. Npj Science of Food, 2020, 4, 11.	2.5	8
71	Mineralogy, chemistry, and composition of organic compounds in the fresh carbonaceous chondrite Mukundpura: CM1 or CM2?. Meteoritics and Planetary Science, 2020, 55, 1681-1696.	0.7	10
72	Sulfate Alters the Competition Among Microbiome Members of Sediments Chronically Exposed to Asphalt. Frontiers in Microbiology, 2020, 11, 556793.	1.5	5

#	Article	IF	CITATIONS
73	Antioxidant activity from inactivated yeast: Expanding knowledge beyond the glutathione-related oxidative stability of wine. Food Chemistry, 2020, 325, 126941.	4.2	25
74	Tracking the formation of new brominated disinfection by-products during the seawater desalination process. Environmental Science: Water Research and Technology, 2020, 6, 2521-2541.	1.2	12
75	Reading From the Crystal Ball: The Laws of Moore and Kurzweil Applied to Mass Spectrometry in Food Analysis. Frontiers in Nutrition, 2020, 7, 9.	1.6	4
76	Cultivar- and Wood Area-Dependent Metabolomic Fingerprints of Grapevine Infected by Botryosphaeria Dieback. Phytopathology, 2020, 110, 1821-1837.	1.1	8
77	Reduced mitochondrial resilience enables non-canonical induction of apoptosis after TNF receptor signaling in virus-infected hepatocytes. Journal of Hepatology, 2020, 73, 1347-1359.	1.8	11
78	Bio-Protection as an Alternative to Sulphites: Impact on Chemical and Microbial Characteristics of Red Wines. Frontiers in Microbiology, 2020, 11, 1308.	1.5	29
79	Selective removal of natural organic matter during drinking water production changes the composition of disinfection by-products. Environmental Science: Water Research and Technology, 2020, 6, 779-794.	1.2	31
80	Contribution of ketone/aldehyde-containing compounds to the composition and optical properties of Suwannee River fulvic acid revealed by ultrahigh resolution mass spectrometry and deuterium labeling. Analytical and Bioanalytical Chemistry, 2020, 412, 1441-1451.	1.9	9
81	Influence of regionality and maturation time on the chemical fingerprint of whisky. Food Chemistry, 2020, 323, 126748.	4.2	12
82	Exploring yeast interactions through metabolic profiling. Scientific Reports, 2020, 10, 6073.	1.6	40
83	Advanced identification of global bioactivity hotspots via screening of the metabolic fingerprint of entire ecosystems. Scientific Reports, 2020, 10, 1319.	1.6	17
84	Interlaboratory comparison of humic substances compositional space as measured by Fourier transform ion cyclotron resonance mass spectrometry (IUPAC Technical Report). Pure and Applied Chemistry, 2020, 92, 1447-1467.	0.9	15
85	Unprecedented Molecular Diversity Revealed in Meteoritic Insoluble Organic Matter: The Paris Meteorite's Case. Planetary Science Journal, 2020, 1, 55.	1.5	19
86	Guidelines for the Use of Deuterium Oxide (D2O) in 1H NMR Metabolomics. Analytical Chemistry, 2019, 91, 11063-11069.	3.2	21
87	Sunlight-induced phototransformation of transphilic and hydrophobic fractions of Suwannee River dissolved organic matter. Science of the Total Environment, 2019, 694, 133737.	3.9	14
88	Dealing with complexity: general discussion. Faraday Discussions, 2019, 218, 138-156.	1.6	1
89	Rebuilding core abscisic acid signaling pathways of <i>Arabidopsis</i> in yeast. EMBO Journal, 2019, 38, e101859.	3.5	25
90	High resolution techniques: general discussion. Faraday Discussions, 2019, 218, 247-267.	1.6	4

#	Article	IF	CITATIONS
91	Future challenges and new approaches: general discussion. Faraday Discussions, 2019, 218, 505-523.	1.6	1
92	Simulated Sunlight Selectively Modifies Maillard Reaction Products in a Wide Array of Chemical Reactions. Chemistry - A European Journal, 2019, 25, 13208-13217.	1.7	12
93	Evolutionary Steps in the Analytics of Primordial Metabolic Evolution. Life, 2019, 9, 50.	1.1	8
94	Systems chemical analytics: introduction to the challenges of chemical complexity analysis. Faraday Discussions, 2019, 218, 9-28.	1.6	40
95	Impact of Oak Wood Barrel Tannin Potential and Toasting on White Wine Antioxidant Stability. Journal of Agricultural and Food Chemistry, 2019, 67, 8402-8410.	2.4	12
96	Enceladus: First Observed Primordial Soup Could Arbitrate Origin-of-Life Debate. Astrobiology, 2019, 19, 1263-1278.	1.5	26
97	The Renchen L5-6 chondrite breccia – The first confirmed meteorite fall from Baden-Württemberg (Germany). Chemie Der Erde, 2019, 79, 125525.	0.8	18
98	Molecular change of dissolved organic matter and patterns of bacterial activity in a stream along a land-use gradient. Water Research, 2019, 164, 114919.	5.3	50
99	Ejbyâ€"A new H5/6 ordinary chondrite fall in Copenhagen, Denmark. Meteoritics and Planetary Science, 2019, 54, 1853-1869.	0.7	11
100	<i>Sargassum</i> sp. Act as a Large Regional Source of Marine Dissolved Organic Carbon and Polyphenols. Global Biogeochemical Cycles, 2019, 33, 1423-1439.	1.9	38
101	Organosulfur Compounds Formed by Sulfur Ion Bombardment of Astrophysical Ice Analogs: Implications for Moons, Comets, and Kuiper Belt Objects. Astrophysical Journal Letters, 2019, 885, L40.	3.0	17
102	Wine aging: a bottleneck story. Npj Science of Food, 2019, 3, 14.	2.5	18
103	Mass differences in metabolome analyses of untargeted direct infusion ultra-high resolution MS data. , 2019, , 357-405.		6
104	Foodomics assessed by Fourier transform mass spectrometry. , 2019, , 651-677.		4
105	Data processing and automation in Fourier transform mass spectrometry., 2019, , 133-185.		8
106	Metabolic Functions of Gut Microbes Associate With Efficacy ofÂTumor Necrosis Factor Antagonists in Patients With Inflammatory Bowel Diseases. Gastroenterology, 2019, 157, 1279-1292.e11.	0.6	180
107	Organic sulfur fingerprint indicates continued injection fluid signature 10 months after hydraulic fracturing. Environmental Sciences: Processes and Impacts, 2019, 21, 206-213.	1.7	4
108	Electrochemical triggering of the Chardonnay wine metabolome. Food Chemistry, 2019, 286, 64-70.	4.2	7

#	Article	IF	CITATIONS
109	Mass Difference Maps and Their Application for the Recalibration of Mass Spectrometric Data in Nontargeted Metabolomics. Analytical Chemistry, 2019, 91, 3350-3358.	3.2	13
110	Milk-Derived Amadori Products in Feces of Formula-Fed Infants. Journal of Agricultural and Food Chemistry, 2019, 67, 8061-8069.	2.4	16
111	Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: coupling of bacterial diversity and DOM chemodiversity. ISME Journal, 2019, 13, 2551-2565.	4.4	122
112	A light, chondritic xenolith in the Murchison (CM) chondrite – Formation by fluid-assisted percolation during metasomatism?. Chemie Der Erde, 2019, 79, 125518.	0.8	17
113	Metabolic diversity conveyed by the process leading to glutathione accumulation in inactivated dry yeast: A synthetic media study. Food Research International, 2019, 123, 762-770.	2.9	13
114	Profiling Murchison Soluble Organic Matter for New Organic Compounds with APPI- and ESI-FT-ICR MS. Life, 2019, 9, 48.	1.1	15
115	Formation of Brominated Organic Compounds and Molecular Transformations in Dissolved Organic Matter (DOM) after Ballast Water Treatment with Sodium Dichloroisocyanurate Dihydrate (DICD). Environmental Science & Dichloroisocyanurate Dihydrate (DICD).	4.6	20
116	The CM carbonaceous chondrite regolith Diepenveen. Meteoritics and Planetary Science, 2019, 54, 1431-1461.	0.7	9
117	Influence of cell-cell contact between L. thermotolerans and S. cerevisiae on yeast interactions and the exo-metabolome. Food Microbiology, 2019, 83, 122-133.	2.1	57
118	Occurrence and distribution of UV-filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii. Science of the Total Environment, 2019, 670, 398-410.	3.9	144
119	The chemodiversity of algal dissolved organic matter from lysed Microcystis aeruginosa cells and its ability to form disinfection by-products during chlorination. Water Research, 2019, 155, 300-309.	5.3	55
120	Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters. Journal of Environmental Quality, 2019, 48, 217-232.	1.0	148
121	The Sariçiçek howardite fall in Turkey: Source crater of <scp>HED</scp> meteorites on Vesta and impact risk of Vestoids. Meteoritics and Planetary Science, 2019, 54, 953-1008.	0.7	30
122	Waterworks-specific composition of drinking water disinfection by-products. Environmental Science: Water Research and Technology, 2019, 5, 861-872.	1.2	38
123	The discovery of Lake Hephaestus, the youngest athalassohaline deep-sea formation on Earth. Scientific Reports, 2019, 9, 1679.	1.6	24
124	Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Molecular Metabolism, 2019, 22, 96-109.	3.0	102
125	Development and application of a HILIC UHPLC-MS method for polar fecal metabolome profiling. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1109, 142-148.	1.2	26
126	Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters. Journal of Environmental Quality, 2019, 48, 1126-1126.	1.0	16

#	Article	IF	CITATIONS
127	Integrative Metabolomic and Metallomic Analysis in a Case–Control Cohort With Parkinson's Disease. Frontiers in Aging Neuroscience, 2019, 11, 331.	1.7	15
128	Optimizing Water-Based Extraction of Bioactive Principles of Hawthorn: From Experimental Laboratory Research to Homemade Preparations. Molecules, 2019, 24, 4420.	1.7	12
129	Transitory microbial habitat in the hyperarid Atacama Desert. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2670-2675.	3.3	172
130	Productivity Contribution of Paleozoic Woodlands to the Formation of Shaleâ€Hosted Massive Sulfide Deposits in the Iberian Pyrite Belt (Tharsis, Spain). Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1017-1040.	1.3	4
131	Metformin impacts cecal bile acid profiles in mice. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1083, 35-43.	1.2	8
132	Species fractionation in a case-control study concerning Parkinson's disease: Cu-amino acids discriminate CSF of PD from controls. Journal of Trace Elements in Medicine and Biology, 2018, 49, 164-170.	1.5	24
133	Mycorrhiza-Triggered Transcriptomic and Metabolomic Networks Impinge on Herbivore Fitness. Plant Physiology, 2018, 176, 2639-2656.	2.3	75
134	Determination of soyasaponins in Fagioli di Sarconi beans (Phaseolus vulgaris L.) by LC-ESI-FTICR-MS and evaluation of their hypoglycemic activity. Analytical and Bioanalytical Chemistry, 2018, 410, 1561-1569.	1.9	24
135	Increased urinary osmolyte excretion indicates chronic kidney disease severity and progression rate. Nephrology Dialysis Transplantation, 2018, 33, 2156-2164.	0.4	46
136	Tandem HILICâ€RP liquid chromatography for increased polarity coverage in food analysis. Electrophoresis, 2018, 39, 1645-1653.	1.3	12
137	Do dihydroxymagnesium carboxylates form Grignard-type reagents? A theoretical investigation on decarboxylative fragmentation. Journal of Molecular Modeling, 2018, 24, 106.	0.8	1
138	Temporal dynamics of halogenated organic compounds in Marcellus Shale flowback. Water Research, 2018, 136, 200-206.	5.3	31
139	Monitoring chemical changes during food sterilisation using ultrahigh resolution mass spectrometry. Food Chemistry, 2018, 242, 316-322.	4.2	17
140	Mass spectrometry-based phytochemical screening for hypoglycemic activity of Fagioli di Sarconi beans (Phaseolus vulgaris L.). Food Chemistry, 2018, 242, 497-504.	4.2	39
141	Extensive processing of sediment pore water dissolved organic matter during anoxic incubation as observed by high-field mass spectrometry (FTICR-MS). Water Research, 2018, 129, 252-263.	5.3	78
142	Microbiome-Triggered Transformations of Trace Organic Chemicals in the Presence of Effluent Organic Matter in Managed Aquifer Recharge (MAR) Systems. Environmental Science & Emp; Technology, 2018, 52, 14342-14351.	4.6	15
143	Insights into the Chemistry of Non-Enzymatic Browning Reactions in Different Ribose-Amino Acid Model Systems. Scientific Reports, 2018, 8, 16879.	1.6	87
144	Coral metabolite gradients affect microbial community structures and act as a disease cue. Communications Biology, 2018, 1, 184.	2.0	39

#	Article	IF	CITATIONS
145	The Molecular Fingerprint of Fluorescent Natural Organic Matter Offers Insight into Biogeochemical Sources and Diagenetic State. Analytical Chemistry, 2018, 90, 14188-14197.	3.2	45
146	Metabolomic investigations in cerebrospinal fluid of Parkinson's disease. PLoS ONE, 2018, 13, e0208752.	1.1	62
147	Yellowstone Hot Springs are Organic Chemodiversity Hot Spots. Scientific Reports, 2018, 8, 14155.	1.6	25
148	Aging and Molecular Changes of Dissolved Organic Matter Between Two Deep Oceanic Endâ€Members. Global Biogeochemical Cycles, 2018, 32, 1449-1456.	1.9	15
149	The marine bacterium Phaeobacter inhibens secures external ammonium by rapid buildup of intracellular nitrogen stocks. FEMS Microbiology Ecology, 2018, 94, .	1.3	7
150	Prevalence and nature of heating processes in CM and C2-ungrouped chondrites as revealed by insoluble organic matter. Geochimica Et Cosmochimica Acta, 2018, 241, 17-37.	1.6	86
151	Seasonal changes in dissolved organic matter composition in Delaware Bay, USA in March and August 2014. Organic Geochemistry, 2018, 122, 87-97.	0.9	20
152	Characterisation of dissolved organic matter using Fourier-transform ion cyclotron resonance mass spectrometry: Type-specific unique signatures and implications for reactivity. Science of the Total Environment, 2018, 644, 68-76.	3.9	29
153	Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle. Life, 2018, 8, 18.	1.1	30
154	Pharmacometabolic response to pirfenidone in pulmonary fibrosis detected by MALDI-FTICR-MSI. European Respiratory Journal, 2018, 52, 1702314.	3.1	26
155	Short-Term Exposure to Nitrogen Dioxide Provides Basal Pathogen Resistance. Plant Physiology, 2018, 178, 468-487.	2.3	17
156	Metabotype variation in a field population of tansy plants influences aphid host selection. Plant, Cell and Environment, 2018, 41, 2791-2805.	2.8	30
157	Dietary non-fermentable fiber prevents autoimmune neurological disease by changing gut metabolic and immune status. Scientific Reports, 2018, 8, 10431.	1.6	63
158	Magnetic molecularly imprinted polymer prepared by microwave heating for confirmatory determination of chloramphenicol in chicken feed using high-performance liquid chromatography-tandem mass spectrometry. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2018, 53, 738-745.	0.7	3
159	Usage of FT-ICR-MS Metabolomics for Characterizing the Chemical Signatures of Barrel-Aged Whisky. Frontiers in Chemistry, 2018, 6, 29.	1.8	42
160	Impact of Glutathione on Wines Oxidative Stability: A Combined Sensory and Metabolomic Study. Frontiers in Chemistry, 2018, 6, 182.	1.8	41
161	Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes. Protoplasma, 2018, 255, 1239-1252.	1.0	31
162	Chronic d-serine supplementation impairs insulin secretion. Molecular Metabolism, 2018, 16, 191-202.	3.0	29

#	Article	IF	CITATIONS
163	Detection of the Bacterial Quorum-Sensing Signaling Molecules N-Acyl-Homoserine Lactones (HSL) and N-Acyl-Homoserine (HS) with an Enzyme-Linked Immunosorbent Assay (ELISA) and via Ultrahigh-Performance Liquid Chromatography Coupled to Mass Spectrometry (UHPLC-MS). Methods in Molecular Biology, 2018, 1673, 61-72.	0.4	14
164	Pharmacometabolic effect of pirfenidone treatment in IPF detected by high resolution MALDI-FTICR imaging. , 2018, , .		0
165	Wine microbiome: A dynamic world of microbial interactions. Critical Reviews in Food Science and Nutrition, 2017, 57, 856-873.	5.4	169
166	Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut, 2017, 66, 863-871.	6.1	237
167	Nanoparticle exposure reactivates latent herpesvirus and restores a signature of acute infection. Particle and Fibre Toxicology, 2017, 14, 2.	2.8	24
168	Optical properties and molecular diversity of dissolved organic matter in the Bering Strait and Chukchi Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 144, 104-111.	0.6	14
169	Differences in DOM of rewetted and natural peatlands $\hat{a}\in$ Results from high-field FT-ICR-MS and bulk optical parameters. Science of the Total Environment, 2017, 586, 770-781.	3.9	50
170	Membrane vesicle-mediated bacterial communication. ISME Journal, 2017, 11, 1504-1509.	4.4	131
171	Previously unknown class of metalorganic compounds revealed in meteorites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2819-2824.	3.3	47
172	Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter. Scientific Reports, 2017, 7, 43739.	1.6	36
173	Asymmetrical flow field-flow fractionation of white wine chromophoric colloidal matter. Analytical and Bioanalytical Chemistry, 2017, 409, 2757-2766.	1.9	14
174	Tracking Aging of Bitumen and Its Saturate, Aromatic, Resin, and Asphaltene Fractions Using High-Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Samp; Fuels, 2017, 31, 4771-4779.	2.5	66
175	Sulfites and the wine metabolome. Food Chemistry, 2017, 237, 106-113.	4.2	58
176	Halogenated Organic Compounds Identified in Hydraulic Fracturing Wastewaters Using Ultrahigh Resolution Mass Spectrometry. Environmental Science & Environmental Science & 2017, 51, 5377-5385.	4.6	71
177	Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties. Nature Communications, 2017, 8, 15284.	5.8	100
178	Identification of a High-Affinity Pyruvate Receptor in Escherichia coli. Scientific Reports, 2017, 7, 1388.	1.6	36
179	Foodomics as a promising tool to investigate the mycobolome. TrAC - Trends in Analytical Chemistry, 2017, 96, 22-30.	5.8	26
180	Response to Comment on "Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory― Science, 2017, 356, 813-813.	6.0	10

#	Article	IF	CITATIONS
181	The Stubenberg meteoriteâ€"An <scp>LL</scp> 6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field. Meteoritics and Planetary Science, 2017, 52, 1683-1703.	0.7	20
182	High field FT-ICR mass spectrometry data sets enlighten qualitative DOM alteration in lake sediment porewater profiles. Organic Geochemistry, 2017, 108, 51-60.	0.9	25
183	How representative are dissolved organic matter (DOM) extracts? A comprehensive study of sorbent selectivity for DOM isolation. Water Research, 2017, 116, 316-323.	5.3	98
184	Characterization of poplar metabotypes via mass difference enrichment analysis. Plant, Cell and Environment, 2017, 40, 1057-1073.	2.8	47
185	Chemical messages from an ancient buried bottle: metabolomics for wine archeochemistry. Npj Science of Food, 2017, 1 , 1 .	2.5	19
186	Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. MBio, 2017, 8 , .	1.8	219
187	High reactivity of deep biota under anthropogenic CO2 injection into basalt. Nature Communications, 2017, 8, 1063.	5.8	55
188	Digging into the low molecular weight peptidome with the OligoNet web server. Scientific Reports, 2017, 7, 11692.	1.6	11
189	Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets. Scientific Reports, 2017, 7, 11047.	1.6	78
190	Alterations in Grapevine Leaf Metabolism Occur Prior to Esca Apoplexy Appearance. Molecular Plant-Microbe Interactions, 2017, 30, 946-959.	1.4	31
191	Microbiomarkers in inflammatory bowel diseases: caveats come with caviar. Gut, 2017, 66, 1734-1738.	6.1	47
192	Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. American Journal of Clinical Nutrition, 2017, 106, 1274-1286.	2.2	124
193	Fourier transform (FT)â€artifacts and powerâ€function resolution filter in Fourier transform mass spectrometry. Rapid Communications in Mass Spectrometry, 2017, 31, 1607-1615.	0.7	25
194	Redox Conditions Affect Dissolved Organic Carbon Quality in Stratified Freshwaters. Environmental Science & Environmental Scie	4.6	29
195	N-acyl-homoserine lactone dynamics during biofilm formation of a 1,2,4-trichlorobenzene mineralizing community on clay. Science of the Total Environment, 2017, 605-606, 1031-1038.	3.9	6
196	Evolution of Complex Maillard Chemical Reactions, Resolved in Time. Scientific Reports, 2017, 7, 3227.	1.6	72
197	A new approach for evaluating transformations of dissolved organic matter (DOM) via high-resolution mass spectrometry and relating it to bacterial activity. Water Research, 2017, 123, 513-523.	5.3	52
198	The Braunschweig meteorite â^' a recent L6 chondrite fall in Germany. Chemie Der Erde, 2017, 77, 207-224.	0.8	16

#	Article	IF	Citations
199	Supramolecular combinations of humic polyanions as potent microbicides with polymodal anti-HIV-activities. New Journal of Chemistry, 2017, 41, 212-224.	1.4	19
200	Wine microbiology is driven by vineyard and winery anthropogenic factors. Microbial Biotechnology, 2017, 10, 354-370.	2.0	71
201	D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. Journal of Allergy and Clinical Immunology, 2017, 139, 1525-1535.	1.5	119
202	Degradation products of profenofos as identified by high-field FTICR mass spectrometry: Isotopic fine structure approach. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52, 10-22.	0.7	8
203	Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis. BMC Plant Biology, 2017, 17, 120.	1.6	52
204	Metabolic Fingerprint of PS3-Induced Resistance of Grapevine Leaves against Plasmopara viticola Revealed Differences in Elicitor-Triggered Defenses. Frontiers in Plant Science, 2017, 08, 101.	1.7	23
205	Growth of Chlamydia pneumoniae Is Enhanced in Cells with Impaired Mitochondrial Function. Frontiers in Cellular and Infection Microbiology, 2017, 7, 499.	1.8	18
206	The Microbial Metabolite Butyrate Induces Expression of Th1-Associated Factors in CD4+ T Cells. Frontiers in Immunology, 2017, 8, 1036.	2.2	193
207	Comparative analysis of LytS/LytTR-type histidine kinase/response regulator systems in \hat{I}^3 -proteobacteria. PLoS ONE, 2017, 12, e0182993.	1.1	18
208	Foodomics., 2017,, 63-63.		0
209	Bioactive Potential of Marine Macroalgae from the Central Red Sea (Saudi Arabia) Assessed by High-Throughput Imaging-Based Phenotypic Profiling. Marine Drugs, 2017, 15, 80.	2.2	16
210	LipidFrag: Improving reliability of in silico fragmentation of lipids and application to the Caenorhabditis elegans lipidome. PLoS ONE, 2017, 12, e0172311.	1.1	21
211	Chemodiversity of dissolved organic matter in the Amazon Basin. Biogeosciences, 2016, 13, 4279-4290.	1.3	53
212	Molecular characterization of dissolved organic matter from subtropical wetlands: a comparative study through the analysis of optical properties, NMR and FTICR/MS. Biogeosciences, 2016, 13, 2257-2277.	1.3	105
213	Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1). Marine Drugs, 2016, 14, 28.	2.2	33
214	Proposed Guidelines for Solid Phase Extraction of Suwannee River Dissolved Organic Matter. Analytical Chemistry, 2016, 88, 6680-6688.	3.2	118
215	1H NMR-based metabolite profiling workflow to reduce inter-sample chemical shift variations in urine samples for improved biomarker discovery. Analytical and Bioanalytical Chemistry, 2016, 408, 4683-4691.	1.9	15
216	Ultrahigh-resolution FT-ICR mass spectrometry for molecular characterisation of pressurised hot water-extractable organic matter in soils. Biogeochemistry, 2016, 128, 307-326.	1.7	42

#	Article	IF	CITATIONS
217	161 Impact of Early Life Intervention With Bifidobacteria on the Structure and Function of Infant Fecal Microbiota. Gastroenterology, 2016, 150, S40-S41.	0.6	O
218	MetICA: independent component analysis for high-resolution mass-spectrometry based non-targeted metabolomics. BMC Bioinformatics, 2016, 17, 114.	1.2	22
219	Geochemistry of Dissolved Organic Matter in a Spatially Highly Resolved Groundwater Petroleum Hydrocarbon Plume Cross-Section. Environmental Science &	4.6	55
220	How salt lakes affect atmospheric new particle formation: A case study in Western Australia. Science of the Total Environment, 2016, 573, 985-995.	3.9	6
221	Capillary Electrophoresis in Metabolomics. Methods in Molecular Biology, 2016, 1483, 437-470.	0.4	16
222	Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory. Science, 2016, 354, 456-459.	6.0	152
223	Capillary Electrophoresis in Wine Science. Methods in Molecular Biology, 2016, 1483, 509-523.	0.4	7
224	Molecular microbiology methods for environmental diagnosis. Environmental Chemistry Letters, 2016, 14, 423-441.	8.3	75
225	Comprehensive structure-selective characterization of dissolved organic matter by reducing molecular complexity and increasing analytical dimensions. Water Research, 2016, 106, 477-487.	5. 3	24
226	Correction to 2-Furoylglycine as a Candidate Biomarker of Coffee Consumption. Journal of Agricultural and Food Chemistry, 2016, 64, 8958-8958.	2.4	1
227	The CE-Way of Thinking: "All Is Relative!― Methods in Molecular Biology, 2016, 1483, 3-19.	0.4	7
228	Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Molecular Metabolism, 2016, 5, 1162-1174.	3.0	170
229	Regulatory role of hexosamine biosynthetic pathway on hepatic cancer stem cell marker CD133 under low glucose conditions. Scientific Reports, 2016, 6, 21184.	1.6	22
230	A Semiempirical Approach for a Rapid Comprehensive Evaluation of the Electrophoretic Behaviors of Small Molecules in Free Zone Electrophoresis. Methods in Molecular Biology, 2016, 1483, 21-35.	0.4	1
231	Challenges of metabolomics in human gut microbiota research. International Journal of Medical Microbiology, 2016, 306, 266-279.	1.5	117
232	Prenylfuranocoumarin–HMGA–flavonol glucoside conjugates and other constituents of the fruit peels of Citrus hystrix and their anticholinesterase activity. Phytochemistry, 2016, 127, 38-49.	1.4	10
233	High field FT-ICR mass spectrometry for molecular characterization of snow board from Moscow regions. Science of the Total Environment, 2016, 557-558, 12-19.	3.9	20
234	Molecular formula assignment for dissolved organic matter (DOM) using high-field FT-ICR-MS: chemical perspective and validation of sulphur-rich organic components (CHOS) in pit lake samples. Analytical and Bioanalytical Chemistry, 2016, 408, 2461-2469.	1.9	48

#	Article	IF	CITATIONS
235	Natural oxygenation of Champagne wine during ageing on lees: A metabolomics picture of hormesis. Food Chemistry, 2016, 203, 207-215.	4.2	35
236	Upgrading coagulation with hollow-fibre nanofiltration for improved organic matter removal during surface water treatment. Water Research, 2016, 89, 232-240.	5.3	47
237	New molecular evidence of wine yeast-bacteria interaction unraveled by non-targeted exometabolomic profiling. Metabolomics, 2016, 12, 1.	1.4	26
238	The Caenorhabditis elegans lipidome. Archives of Biochemistry and Biophysics, 2016, 589, 27-37.	1.4	41
239	Structural Characterization of Arginine Vasopressin and Lysine Vasopressin by Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry and Infrared Multiphoton Dissociation. European Journal of Mass Spectrometry, 2015, 21, 211-219.	0.5	2
240	Pollenâ€derived adenosine is a necessary cofactor for ragweed allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 944-954.	2.7	35
241	The Vic \tilde{A}^a ncia meteorite fall: A new unshocked (S1) weakly metamorphosed (3.2) <code><scp>LL</scp>chondrite</code> . Meteoritics and Planetary Science, 2015, 50, 1089-1111.	0.7	14
242	Evidence for the recent origin of a bacterial protein-coding, overlapping orphan gene by evolutionary overprinting. BMC Evolutionary Biology, 2015, 15, 283.	3.2	43
243	Identification of two arginine kinase forms of endoparasitoid ⟨i⟩Leptomastix dactylopii⟨/i⟩ venom by bottom upâ€sequence tag approach. Journal of Mass Spectrometry, 2015, 50, 756-765.	0.7	8
244	Nontarget analysis of Murchison soluble organic matter by highâ€field NMR spectroscopy and FTICR mass spectrometry. Magnetic Resonance in Chemistry, 2015, 53, 754-768.	1.1	38
245	Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds in healthy adult men. Molecular Nutrition and Food Research, 2015, 59, 1614-1628.	1.5	95
246	Depth-dependent photodegradation of marine dissolved organic matter. Frontiers in Marine Science, 2015, 2, .	1.2	59
247	FP292NON-TARGETED METABOLOMICS APPROACHES FOR ELUCIDATION OF NOVEL DIAGNOSTIC MARKERS IN CHRONIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2015, 30, iii164-iii165.	0.4	2
248	The compositional space of exhaled breath condensate and its link to the human breath volatilome. Journal of Breath Research, 2015, 9, 027105.	1.5	21
249	Diverse Serum Manganese Species Affect Brain Metabolites Depending on Exposure Conditions. Chemical Research in Toxicology, 2015, 28, 1434-1442.	1.7	18
250	Integrating analytical resolutions in non-targeted wine metabolomics. Tetrahedron, 2015, 71, 2983-2990.	1.0	45
251	Cyclic Lipopeptides of <i>Bacillus amyloliquefaciens</i> subsp. <i>plantarum</i> Colonizing the Lettuce Rhizosphere Enhance Plant Defense Responses Toward the Bottom Rot Pathogen <i>Rhizoctonia solani</i> Molecular Plant-Microbe Interactions, 2015, 28, 984-995.	1.4	173
252	Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production. Water Research, 2015, 85, 286-294.	5.3	191

#	Article	IF	CITATIONS
253	Combined Nontargeted Analytical Methodologies for the Characterization of the Chemical Evolution of Bottled Wines. ACS Symposium Series, 2015, , 13-27.	0.5	O
254	Fast separation and quantification of steroid hormones î"4- and î"7-dafachronic acid in Caenorhabditis elegans. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 978-979, 118-121.	1.2	4
255	Microbial community of the deepâ€sea brine <scp>L</scp> ake <scp><i>K</i></scp> <i>ryos</i> <seawater–brine <scp="" active="" as="" below="" by="" chaotropicity="" interface="" is="" life="" limit="" of="" recovery="" revealed="" the="">mRNA. Environmental Microbiology, 2015, 17, 364-382.</seawater–brine>	1.8	109
256	DI-ICR-FT-MS-based high-throughput deep metabotyping: a case study of the Caenorhabditis elegans–Pseudomonas aeruginosa infection model. Analytical and Bioanalytical Chemistry, 2015, 407, 1059-1073.	1.9	26
257	Bromination of Marine Dissolved Organic Matter following Full Scale Electrochemical Ballast Water Disinfection. Environmental Science & Environmental	4.6	62
258	Solutions for Low and High Accuracy Mass Spectrometric Data Matching: A Data-Driven Annotation Strategy in Nontargeted Metabolomics. Analytical Chemistry, 2015, 87, 8917-8924.	3.2	41
259	Computational analysis and ratiometric comparison approaches aimed to assist column selection in hydrophilic interaction liquid chromatography–tandem mass spectrometry targeted metabolomics. Journal of Chromatography A, 2015, 1406, 145-155.	1.8	22
260	New particle formation above a simulated salt lake in aerosol chamber experiments. Environmental Chemistry, 2015, 12, 489.	0.7	7
261	Knocking Down of Isoprene Emission Modifies the Lipid Matrix of Thylakoid Membranes and Influences the Chloroplast Ultrastructure in Poplar. Plant Physiology, 2015, 168, 859-870.	2.3	37
262	Deep Metabotyping of the Murine Gastrointestinal Tract for the Visualization of Digestion and Microbial Metabolism. Journal of Proteome Research, 2015, 14, 2267-2277.	1.8	8
263	Chemical messages in 170-year-old champagne bottles from the Baltic Sea: Revealing tastes from the past. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5893-5898.	3.3	47
264	Origin-specific molecular signatures of dissolved organic matter in the Lena Delta. Biogeochemistry, 2015, 123, 1-14.	1.7	38
265	Water-extractable organic matter linked to soil physico-chemistry andÂmicrobiology at the regional scale. Soil Biology and Biochemistry, 2015, 84, 158-167.	4.2	33
266	Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean. Frontiers in Plant Science, 2015, 6, 205.	1.7	41
267	2-Furoylglycine as a Candidate Biomarker of Coffee Consumption. Journal of Agricultural and Food Chemistry, 2015, 63, 8615-8621.	2.4	59
268	Isoprene emission by poplar is not important for the feeding behaviour of poplar leaf beetles. BMC Plant Biology, 2015, 15, 165.	1.6	20
269	Fluorescence Fingerprinting of Bottled White Wines Can Reveal Memories Related to Sulfur Dioxide Treatments of the Must. Analytical Chemistry, 2015, 87, 8132-8137.	3.2	39
270	High-Field FTICR-MS Data Evaluation of Natural Organic Matter: Are CHON ₅ S ₂ Molecular Class Formulas Assigned to ¹³ C Isotopic <i>m</i> /ci>z and in Reality CHO Components?. Analytical Chemistry, 2015, 87, 9563-9566.	3.2	27

#	Article	IF	Citations
271	<scp>UV</scp> â€ <scp>B</scp> mediated metabolic rearrangements in poplar revealed by nonâ€targeted metabolomics. Plant, Cell and Environment, 2015, 38, 892-904.	2.8	69
272	Folic acid induces salicylic acidâ€dependent immunity in <scp>A</scp> rabidopsis and enhances susceptibility to <i><scp>A</scp>lternaria brassicicola</i> . Molecular Plant Pathology, 2015, 16, 616-622.	2.0	41
273	Changes in Brain Metallome/Metabolome Pattern due to a Single i.v. Injection of Manganese in Rats. PLoS ONE, 2015, 10, e0138270.	1.1	23
274	D-tryptophan influences allergic airway inflammation and Th2 immune responses. , 2015, , .		1
275	Analysis of N-acylhomoserine lactone dynamics in continuous cultures of Pseudomonas putida IsoF by use of ELISA and UHPLC/qTOF-MS-derived measurements and mathematical models. Analytical and Bioanalytical Chemistry, 2014, 406, 6373-6383.	1.9	20
276	Transcriptome and Metabolome Data Integrationâ€"Technical Perquisites for Successful Data Fusion and Visualization. Comprehensive Analytical Chemistry, 2014, 63, 421-442.	0.7	6
277	Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid. Journal of Experimental Botany, 2014, 65, 5919-5931.	2.4	60
278	Capillary electrokinetic fractionation mass spectrometry (<scp>CE</scp> k <scp>F</scp> / <scp>MS</scp>): Technology setup and application to metabolite fractionation from complex samples coupled atâ€line with ultrahighâ€resolution mass spectrometry. Electrophoresis, 2014, 35, 1965-1975.	1.3	7
279	Structural characterization of organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry: Aromaticity equivalent approach. Rapid Communications in Mass Spectrometry, 2014, 28, 2445-2454.	0.7	119
280	Highâ€resolution metabolite imaging of light and dark treated retina using <scp>MALDI</scp> â€ <scp>FTICR</scp> mass spectrometry. Proteomics, 2014, 14, 913-923.	1.3	40
281	Phenotype ofhtgA(mbiA), a recently evolved orphan gene of Escherichia coliand Shigella, completely overlapping in antisense toyaaW. FEMS Microbiology Letters, 2014, 350, 57-64.	0.7	44
282	Exploring the <scp>A</scp> rabidopsis sulfur metabolome. Plant Journal, 2014, 77, 31-45.	2.8	60
283	High-fat diet alters gut microbiota physiology in mice. ISME Journal, 2014, 8, 295-308.	4.4	583
284	Photochemical production of polyols arising from significant photo-transformation of dissolved organic matter in the oligotrophic surface ocean. Marine Chemistry, 2014, 163, 10-18.	0.9	50
285	A grape and wine chemodiversity comparison of different appellations in Burgundy: Vintage vs terroir effects. Food Chemistry, 2014, 152, 100-107.	4.2	112
286	Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean. Geochimica Et Cosmochimica Acta, 2014, 126, 321-337.	1.6	247
287	Changes in Dissolved Organic Matter during the Treatment Processes of a Drinking Water Plant in Sweden and Formation of Previously Unknown Disinfection Byproducts. Environmental Science & Eamp; Technology, 2014, 48, 12714-12722.	4.6	155
288	Understanding molecular formula assignment of Fourier transform ion cyclotron resonance mass spectrometry data of natural organic matter from a chemical point of view. Analytical and Bioanalytical Chemistry, 2014, 406, 7977-7987.	1.9	119

#	Article	IF	CITATIONS
289	Impact of dietary metabolism by gut microbiota on the pathogenesis of spontaneous autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 275, 95-96.	1.1	О
290	High-field FT-ICR mass spectrometry and NMR spectroscopy to characterize DOM removal through a nanofiltration pilot plant. Water Research, 2014, 67, 154-165.	5. 3	45
291	Rapid assessment of the coenzyme Q ₁₀ redox state using ultrahigh performance liquid chromatography tandem mass spectrometry. Analyst, The, 2014, 139, 5600-5604.	1.7	12
292	Dimer ion formation and intermolecular fragmentation of 1,2â€diacylglycerols revealed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for more comprehensive lipid analysis. Rapid Communications in Mass Spectrometry, 2014, 28, 1735-1744.	0.7	7
293	Sensitivity improvement in hydrophilic interaction chromatography negative mode electrospray ionization mass spectrometry using 2-(2-methoxyethoxy)ethanol as a post-column modifier for non-targeted metabolomics. Journal of Chromatography A, 2014, 1361, 209-216.	1.8	9
294	Importance of Sulfur-Containing Metabolites in Discriminating Fecal Extracts between Normal and Type-2 Diabetic Mice. Journal of Proteome Research, 2014, 13, 4220-4231.	1.8	28
295	Optimizing a ultrahigh pressure liquid chromatography-time of flight-mass spectrometry approach using a novel sub-2Î⅓m core–shell particle for in depth lipidomic profiling of Caenorhabditis elegans. Journal of Chromatography A, 2014, 1359, 91-99.	1.8	51
296	Water droplets in oil are microhabitats for microbial life. Science, 2014, 345, 673-676.	6.0	118
297	Steroid hormone signalling links reproduction to lifespan in dietary-restricted Caenorhabditis elegans. Nature Communications, 2014, 5, 4879.	5.8	65
298	Fall, recovery, and characterization of the Novato L6 chondrite breccia. Meteoritics and Planetary Science, 2014, 49, 1388-1425.	0.7	59
299	Ultrahigh resolution mass spectrometry-based metabolic characterization reveals cerebellum as a disturbed region in two animal models. Talanta, 2014, 118, 45-53.	2.9	31
300	Enantioseparation and selective detection of D-amino acids by ultra-high-performance liquid chromatography/mass spectrometry in analysis of complex biological samples. Journal of Chromatography A, 2014, 1324, 109-114.	1.8	47
301	Distinct signatures of host–microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet. ISME Journal, 2014, 8, 2380-2396.	4.4	106
302	Molecular and structural characterization of dissolved organic matter during and post cyanobacterial bloom in Taihu by combination of NMR spectroscopy and FTICR mass spectrometry. Water Research, 2014, 57, 280-294.	5. 3	87
303	High precision mass measurements for wine metabolomics. Frontiers in Chemistry, 2014, 2, 102.	1.8	71
304	Automated Label-free Quantification of Metabolites from Liquid Chromatography–Mass Spectrometry Data. Molecular and Cellular Proteomics, 2014, 13, 348-359.	2.5	74
305	The Intracellular Bacteria Chlamydia Hijack Peroxisomes and Utilize Their Enzymatic Capacity to Produce Bacteria-Specific Phospholipids. PLoS ONE, 2014, 9, e86196.	1.1	47
306	The Root Extract of the Medicinal Plant Pelargonium sidoides Is a Potent HIV-1 Attachment Inhibitor. PLoS ONE, 2014, 9, e87487.	1.1	78

#	Article	IF	Citations
307	How Subtle Is the "Terroir―Effect? Chemistry-Related Signatures of Two "Climats de Bourgogne― PLoS ONE, 2014, 9, e97615.	1.1	71
308	Molecular cartography in acute Chlamydia pneumoniae infections—a non-targeted metabolomics approach. Analytical and Bioanalytical Chemistry, 2013, 405, 5119-5131.	1.9	22
309	Perceiving the chemical language of Gram-negative bacteria: listening by high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 493-507.	1.9	13
310	Molecular preservation in halite†and perchlorate†ich hypersaline subsurface deposits in the Salar Grande basin (Atacama Desert, Chile): Implications for the search for molecular biomarkers on Mars. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 922-939.	1.3	30
311	Increasing atmospheric <scp>CO</scp> ₂ reduces metabolic and physiological differences between isopreneâ€and nonâ€isopreneâ€emitting poplars. New Phytologist, 2013, 200, 534-546.	3.5	39
312	Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization. Science, 2013, 342, 1069-1073.	6.0	487
313	Inhibitory Interactions of Rhizobacteria with the Symbiotic Fungus Piriformospora indica. Soil Biology, 2013, , 201-219.	0.6	5
314	A regional study of the seasonal variation in the molecular composition of rainwater. Atmospheric Environment, 2013, 77, 588-597.	1.9	41
315	Liquid chromatography–mass spectrometry in metabolomics research: Mass analyzers in ultra high pressure liquid chromatography coupling. Journal of Chromatography A, 2013, 1292, 51-65.	1.8	139
316	Chromatography and High-Resolution Mass Spectrometry for the Characterization of the Degradation Products of the Photodegradation of Amidosulfuron: An Analytical Approach. Journal of Agricultural and Food Chemistry, 2013, 61, 5271-5278.	2.4	11
317	Analysis of Arabidopsis glutathione-transferases in yeast. Phytochemistry, 2013, 91, 198-207.	1.4	21
318	Soil remediation with a microbial community established on a carrier: Strong hints for microbial communication during 1,2,4-Trichlorobenzene degradation. Chemosphere, 2013, 92, 1403-1409.	4.2	10
319	Hippocampal metabolomics using ultrahigh-resolution mass spectrometry reveals neuroinflammation from Alzheimer's disease in CRND8 mice. Analytical and Bioanalytical Chemistry, 2013, 405, 5105-5117.	1.9	42
320	Molecular Characteristics and Differences of Effluent Organic Matter from Parallel Activated Sludge and Integrated Fixed-Film Activated Sludge (IFAS) Processes. Environmental Science & Emp; Technology, 2013, 47, 130827102639005.	4.6	18
321	Selective Chlorination of Natural Organic Matter: Identification of Previously Unknown Disinfection Byproducts. Environmental Science & Environmental	4.6	194
322	Metabolic Features of Protochlamydia amoebophila Elementary Bodies – A Link between Activity and Infectivity in Chlamydiae. PLoS Pathogens, 2013, 9, e1003553.	2.1	44
323	Isoprene function in two contrasting poplars under salt and sunflecks. Tree Physiology, 2013, 33, 562-578.	1.4	45
324	Integrated transcriptomics and metabolomics decipher differences in the resistance of pedunculate oak to the herbivore Tortrix viridanal BMC Genomics, 2013, 14, 737.	1.2	35

#	Article	lF	Citations
325	Quorum Sensing Inhibition by Asparagopsis taxiformis, a Marine Macro Alga: Separation of the Compound that Interrupts Bacterial Communication. Marine Drugs, 2013, 11, 253-265.	2.2	81
326	Depth-dependent molecular composition and photo-reactivity of dissolved organic matter in a boreal lake under winter and summer conditions. Biogeosciences, 2013, 10, 6945-6956.	1.3	73
327	High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences, 2013, 10, 1583-1624.	1.3	276
328	High Metabolomic Microdiversity within Co-Occurring Isolates of the Extremely Halophilic Bacterium Salinibacter ruber. PLoS ONE, 2013, 8, e64701.	1.1	48
329	Doping Control Using High and Ultra-High Resolution Mass Spectrometry Based Non-Targeted Metabolomics-A Case Study of Salbutamol and Budesonide Abuse. PLoS ONE, 2013, 8, e74584.	1.1	30
330	A molecular perspective on the ageing of marine dissolved organic matter. Biogeosciences, 2012, 9, 1935-1955.	1.3	200
331	Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms. Atmospheric Chemistry and Physics, 2012, 12, 5787-5806.	1.9	31
332	Comparative study on humic substances isolated in thermal groundwaters from deep aquifers below 700 m. Geochemical Journal, 2012, 46, 211-224.	0.5	20
333	The dynamic range of the human metabolome revealed by challenges. FASEB Journal, 2012, 26, 2607-2619.	0.2	268
334	Radar-Enabled Recovery of the Sutter's Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia. Science, 2012, 338, 1583-1587.	6.0	191
335	Bis-dibenzo[a.i]fluorenylidene, does it exist as stable 1,2-diradical?. Journal of Molecular Modeling, 2012, 18, 5089-5095.	0.8	14
336	Prefocusing inside a linear ion beam guideâ€"A SIMION study. International Journal of Mass Spectrometry, 2012, 325-327, 25-29.	0.7	6
337	Phenotypic Switching in Pseudomonas brassicacearum Involves GacS- and GacA-Dependent Rsm Small RNAs. Applied and Environmental Microbiology, 2012, 78, 1658-1665.	1.4	61
338	Characterization of Dissolved Organic Matter in Full Scale Continuous Stirred Tank Biogas Reactors Using Ultrahigh Resolution Mass Spectrometry: A Qualitative Overview. Environmental Science & Emp; Technology, 2012, 46, 12711-12719.	4.6	96
339	Attachment of Chloride Anion to Sugars: Mechanistic Investigation and Discovery of a New Dopant for Efficient Sugar Ionization/Detection in Mass Spectrometers. Chemistry - A European Journal, 2012, 18, 13059-13067.	1.7	40
340	Efficiency and degradation products elucidation of the photodegradation of mefenpyrdiethyl in water interface using TiO2 P-25 and Hombikat UV100. Journal of Environmental Sciences, 2012, 24, 1686-1693.	3.2	12
341	Ultrahigh Resolution Mass Spectrometry Based Non-targeted Microbial Metabolomics. , 2012, , 57-71.		O
342	Variations of DOM Quality in Inflows of a Drinking Water Reservoir: Linking of van Krevelen Diagrams with EEMF Spectra by Rank Correlation. Environmental Science & Eamp; Technology, 2012, 46, 5511-5518.	4.6	180

#	Article	IF	CITATIONS
343	Identification of Weak and Strong Organic Acids in Atmospheric Aerosols by Capillary Electrophoresis/Mass Spectrometry and Ultra-High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2012, 84, 6586-6594.	3.2	42
344	Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols. Biogeosciences, 2012, 9, 1571-1582.	1.3	117
345	Mariboâ€"A new CM fall from Denmark. Meteoritics and Planetary Science, 2012, 47, 30-50.	0.7	71
346	MassTRIX Reloaded: Combined Analysis and Visualization of Transcriptome and Metabolome Data. PLoS ONE, 2012, 7, e39860.	1.1	82
347	Autoinducers Act as Biological Timers in Vibrio harveyi. PLoS ONE, 2012, 7, e48310.	1.1	57
348	Metabolic Influence of Botrytis cinerea Infection in Champagne Base Wine. Journal of Agricultural and Food Chemistry, 2011, 59, 7237-7245.	2.4	38
349	Serum 27-nor-5Î ² -Cholestane-3,7,12,24,25 Pentol Glucuronide Discovered by Metabolomics as Potential Diagnostic Biomarker for Epithelium Ovarian Cancer. Journal of Proteome Research, 2011, 10, 2625-2632.	1.8	89
350	Pollen metabolome analysis reveals adenosine as a major regulator of dendritic cell–primed TH cell responses. Journal of Allergy and Clinical Immunology, 2011, 127, 454-461.e9.	1.5	59
351	Mechanisms of Humic Acids Degradation by White Rot Fungi Explored Using ¹ H NMR Spectroscopy and FTICR Mass Spectrometry. Environmental Science & Explored Using ¹ H NMR Spectroscopy and FTICR Mass Spectrometry. Environmental Science & Explored Using ^{2748-2754.}	4.6	57
352	Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry. Water Research, 2011, 45, 2943-2953.	5.3	224
353	Detection Of Th2 Counteracting Activity In Supernatants From Probiotic Bacteria., 2011,,.		0
354	Biogeochemical controls on the bacterial populations in the eastern Atlantic Ocean. Biogeosciences, 2011, 8, 3747-3759.	1.3	21
355	Physico-chemical characterization of SOA derived from catechol and guaiacol – a model substance for the aromatic fraction of atmospheric HULIS. Atmospheric Chemistry and Physics, 2011, 11, 1-15.	1.9	137
356	Kendrick-Analogous Network Visualisation of Ion Cyclotron Resonance Fourier Transform Mass Spectra: Improved Options for the Assignment of Elemental Compositions and the Classification of Organic Molecular Complexity. European Journal of Mass Spectrometry, 2011, 17, 415-421.	0.5	170
357	Targeted and Non-Targeted Boron Complex Formation followed by Electrospray Fourier Transform Ion Cyclotron Mass Spectrometry: A Novel Approach for Identifying Boron Esters with Natural Organic Matter. European Journal of Mass Spectrometry, 2011, 17, 113-123.	0.5	8
358	Authentication Approach of the Chemodiversity of Grape and Wine by FTICR-MS. ACS Symposium Series, 2011, , 69-88.	0.5	2
359	Response of sulfateâ€reducing bacteria to an artificial oilâ€spill in a coastal marine sediment. Environmental Microbiology, 2011, 13, 1488-1499.	1.8	55
360	Detection of Peptidic Sequences in the Ancient Acidic Sediments of RÃo Tinto, Spain. Origins of Life and Evolution of Biospheres, 2011, 41, 523-527.	0.8	11

#	Article	IF	CITATIONS
361	Response to adverse conditions in two strains of the extremely halophilic species Salinibacter ruber. Extremophiles, 2011, 15, 379-389.	0.9	22
362	Determination of stilbene derivatives in Burgundy red wines by ultra-high-pressure liquid chromatography. Analytical and Bioanalytical Chemistry, 2011, 401, 1513-1521.	1.9	29
363	Novel Cysteine Tags for the Sequencing of Non-Tryptic Disulfide Peptides of Anurans: ESI-MS Study of Fragmentation Efficiency. Journal of the American Society for Mass Spectrometry, 2011, 22, 2246-2255.	1.2	11
364	Can tetraâ€ <i>tert</i> àêbutylethylene be formed by ion–ion recombination or ion–molecule reaction of two diâ€ <i>tert</i> â€butylcarbene units?—a DFT study. Journal of Physical Organic Chemistry, 2011, 24, 83-91.	0.9	3
365	Mass spectrometric stereoisomeric differentiation between α―and βâ€ascorbic acid 2â€∢i>O⟨li>â€glucosides. Experimental and density functional theory study. Rapid Communications in Mass Spectrometry, 2011, 25, 806-814.	0.7	9
366	Analysis of low molecular weight acids by monolithic immobilized pH gradientâ€based capillary isoelectric focusing coupled with mass spectrometry. Journal of Separation Science, 2011, 34, 422-427.	1.3	8
367	Molecular level investigation of reactions between dissolved organic matter and extraction solvents using FT-ICR MS. Marine Chemistry, 2011, 124, 100-107.	0.9	47
368	The <i>Arabidopsis</i> Glucosyltransferase UGT76B1 Conjugates Isoleucic Acid and Modulates Plant Defense and Senescence Â. Plant Cell, 2011, 23, 4124-4145.	3.1	186
369	Modulation of Metabolism and Switching to Biofilm Prevail over Exopolysaccharide Production in the Response of Rhizobium alamii to Cadmium. PLoS ONE, 2011, 6, e26771.	1.1	26
370	Occurrence of <i>N</i> -Acyl Homoserine Lactones in Extracts of Bacterial Strain of <i>Pseudomonas aeruginosa</i> and in Sputum Sample Evaluated by Gas Chromatography–Mass Spectrometry. American Journal of Analytical Chemistry, 2011, 02, 294-302.	0.3	13
371	Letter: Identification of Polyborate Ions in Aqueous Solution by Electrospray Ionisation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. European Journal of Mass Spectrometry, 2010, 16, 237-242.	0.5	4
372	Comparison of Humic Substances Isolated from Thermal Water and Surface Water by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. European Journal of Mass Spectrometry, 2010, 16, 625-630.	0.5	8
373	Hydrolysis of mefenpyrdiethyl: an analytical and DFT investigation. Analytical and Bioanalytical Chemistry, 2010, 398, 2325-2334.	1.9	9
374	Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics, 2010, 6, 362-374.	1.4	181
375	RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: a transcriptomic and metabolomic analysis. Plant Molecular Biology, 2010, 74, 61-75.	2.0	71
376	Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biology, 2010, 10, 150.	1.6	141
377	Preparative freeâ€flow electrophoretic offline ESIâ€Fourier transform ion cyclotron resonance/MS analysis of Suwannee River fulvic acid. Electrophoresis, 2010, 31, 2070-2079.	1.3	15
378	Exploring rearrangements along the fragmentation of glutaric acid negative ion: a combined experimental and theoretical study. Rapid Communications in Mass Spectrometry, 2010, 24, 1198-1206.	0.7	16

#	Article	lF	Citations
379	Novel software for data analysis of Fourier transform ion cyclotron resonance mass spectra applied to natural organic matter. Rapid Communications in Mass Spectrometry, 2010, 24, 2831-2837.	0.7	8
380	Photochemical degradation of natural organic sulfur compounds (CHOS) from ironâ€rich mine pit lake pore waters – an initial understanding from evaluation of singleâ€elemental formulae using ultraâ€highâ€resolution mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 2909-2924.	0.7	32
381	Dynamic regulation of <i>N</i> -acyl-homoserine lactone production and degradation in <i>Pseudomonas putida </i> li>IsoF. FEMS Microbiology Ecology, 2010, 72, 22-34.	1.3	81
382	Lipopolysaccharide mobility in leaf tissue of <i>Arabidopsis thaliana</i> . Molecular Plant Pathology, 2010, 11, 747-755.	2.0	19
383	Fine-scale evolution: genomic, phenotypic and ecological differentiation in two coexisting <i>Salinibacter ruber </i> strains. ISME Journal, 2010, 4, 882-895.	4.4	81
384	Insulin Sensitivity Is Reflected by Characteristic Metabolic Fingerprints - A Fourier Transform Mass Spectrometric Non-Targeted Metabolomics Approach. PLoS ONE, 2010, 5, e13317.	1.1	58
385	High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2763-2768.	3.3	466
386	Use of the kinetic plot method to compare the efficiency and resolution of liquid-phase separation techniques based on different driving forces. Journal of Planar Chromatography - Modern TLC, 2010, 23, 440-446.	0.6	2
387	Amines in the Environment. Critical Reviews in Analytical Chemistry, 2010, 40, 102-121.	1.8	58
388	In Situ Synthesis of Magnetic Multiwalled Carbon Nanotube Composites for the Clean-up of (Fluoro)Quinolones from Human Plasma Prior to Ultrahigh Pressure Liquid Chromatography Analysis. Analytical Chemistry, 2010, 82, 2743-2752.	3.2	98
389	GC/MS-based metabolomics reveals fatty acid biosynthesis and cholesterol metabolism in cell lines infected with influenza A virus. Talanta, 2010, 83, 262-268.	2.9	81
390	Naturally Occurring Human Urinary Peptides for Use in Diagnosis of Chronic Kidney Disease. Molecular and Cellular Proteomics, 2010, 9, 2424-2437.	2.5	434
391	Analytical Approaches for an Important Shellfish Poisoning Agent: Domoic Acid. Journal of Agricultural and Food Chemistry, 2010, 58, 11525-11533.	2.4	41
392	Analysis of the Unresolved Organic Fraction in Atmospheric Aerosols with Ultrahigh-Resolution Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy: Organosulfates As Photochemical Smog Constituents. Analytical Chemistry, 2010, 82, 8017-8026.	3.2	158
393	Physical Heterogeneity Increases Biofilm Resource Use and Its Molecular Diversity in Stream Mesocosms. PLoS ONE, 2010, 5, e9988.	1.1	96
394	Unraveling different chemical fingerprints between a champagne wine and its aerosols. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16545-16549.	3.3	104
395	The chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9174-9179.	3.3	141
396	Metabolomics Reveals Metabolic Biomarkers of Crohn's Disease. PLoS ONE, 2009, 4, e6386.	1.1	429

#	Article	IF	CITATIONS
397	Interactions of diuron with dissolved organic matter from organic amendments. Science of the Total Environment, 2009, 407, 4297-4302.	3.9	40
398	Isolation of two Pseudomonas strains producing pseudomonic acid A. Systematic and Applied Microbiology, 2009, 32, 56-64.	1.2	7
399	Expressing Forest Origins in the Chemical Composition of Cooperage Oak Woods and Corresponding Wines by Using FTICRâ€MS. Chemistry - A European Journal, 2009, 15, 600-611.	1.7	34
400	CEâ€MS: A useful tool for the identification of waterâ€soluble polar organics in air and vehicular emitted particulate matter. Electrophoresis, 2009, 30, 1756-1765.	1.3	15
401	Editorial. Electrophoresis, 2009, 30, 1609-1609.	1.3	2
402	Single drop microextraction of homoserine lactones based quorum sensing signal molecules, and the separation of their enantiomers using gas chromatography mass spectrometry in the presence of biological matrices. Mikrochimica Acta, 2009, 166, 101-107.	2.5	22
403	Exploring rearrangements along the fragmentation pathways of diuron anion: A combined experimental and computational investigation. International Journal of Mass Spectrometry, 2009, 288, 6-15.	0.7	13
404	Automated microextraction sample preparation coupled on-line to FT-ICR-MS: application to desalting and concentration of river and marine dissolved organic matter. Analytical and Bioanalytical Chemistry, 2009, 395, 797-807.	1.9	34
405	Combined utilization of ion mobility and ultraâ€highâ€resolution mass spectrometry to identify multiply charged constituents in natural organic matter. Rapid Communications in Mass Spectrometry, 2009, 23, 683-688.	0.7	31
406	Metabolomics of transgenic maize combining Fourier transform-ion cyclotron resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid extraction. Journal of Chromatography A, 2009, 1216, 7314-7323.	1.8	92
407	Total Mass Difference Statistics Algorithm: A New Approach to Identification of High-Mass Building Blocks in Electrospray Ionization Fourier Transform Ion Cyclotron Mass Spectrometry Data of Natural Organic Matter. Analytical Chemistry, 2009, 81, 10106-10115.	3.2	74
408	Chemical and spectroscopic characterization of marine dissolved organic matter isolated using coupled reverse osmosis–electrodialysis. Geochimica Et Cosmochimica Acta, 2009, 73, 4215-4231.	1.6	96
409	Separation of the Phenoxy Acid Herbicides and Their Enantiomers by Capillary Zone Electrophoresis in Presence of Highly Sulphated Cyclodextrins. Journal of the Chinese Chemical Society, 2009, 56, 1163-1167.	0.8	6
410	Combining chip-ESI with APLI (cESILI) as a multimode source for analysis of complex mixtures with ultrahigh-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2008, 391, 2803-2809.	1.9	45
411	Response of Arabidopsis thaliana to N-hexanoyl-dl-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta, 2008, 229, 73-85.	1.6	201
412	Targeted borate complex formation as followed with electrospray ionization Fourier transform ion cyclotron mass spectrometry: monomolecular model system and polyborate formation. Rapid Communications in Mass Spectrometry, 2008, 22, 3119-3129.	0.7	11
413	CEâ€MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics. Proteomics - Clinical Applications, 2008, 2, 964-973.	0.8	178
414	Trends in CEâ€MS 2005–2006. Electrophoresis, 2008, 29, 66-79.	1.3	72

#	Article	lF	CITATIONS
415	Photocatalytic reactions of imazamox at TiO2, H2O2 and TiO2/H2O2 in water interfaces: Kinetic and photoproducts study. Applied Catalysis B: Environmental, 2008, 84, 524-532.	10.8	63
416	Metabolic evidence for biogeographic isolation of the extremophilic bacterium <i>Salinibacter ruber</i> . ISME Journal, 2008, 2, 242-253.	4.4	108
417	Natural Organic Matter and the Event Horizon of Mass Spectrometry. Analytical Chemistry, 2008, 80, 8908-8919.	3.2	394
418	Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber. Saline Systems, 2008, 4, 15.	2.0	54
419	Practical Approach for the Identification and Isomer Elucidation of Biomarkers Detected in a Metabonomic Study for the Discovery of Individuals at Risk for Diabetes by Integrating the Chromatographic and Mass Spectrometric Information. Analytical Chemistry, 2008, 80, 1280-1289.	3.2	178
420	Capillary Electrophoresis. , 2008, 384, vii-ix.		19
421	In vitro antagonism of an actinobacterial Kitasatospora isolate against the plant pathogen Phytophthora citricola as elucidated with ultrahigh resolution mass spectrometry. Journal of Microbiological Methods, 2008, 75, 188-195.	0.7	17
422	Metabonomics Study on the Effects of the Ginsenoside Rg3 in a β-Cyclodextrin-Based Formulation on Tumor-Bearing Rats by a Fully Automatic Hydrophilic Interaction/Reversed-Phase Column-Switching HPLCâ^ESI-MS Approach. Analytical Chemistry, 2008, 80, 4680-4688.	3.2	74
423	MassTRIX: mass translator into pathways. Nucleic Acids Research, 2008, 36, W481-W484.	6.5	190
424	A Semi-Empirical Approach for a Rapid Comprehensive Evaluation of the Electrophoretic Behaviors of Small Molecules in Free-Zone Electrophoresis., 2008, 384, 593-609.		1
425	The CE Way of Thinking. , 2008, 384, 611-629.		8
426	Capillary Electrochromatography and On-Line Concentration. , 2008, 384, 751-769.		2
427	Determination of Aliphatic Low-Molecular-Weight and Biogenic Amines by Capillary Zone Electrophoresis., 2008, 384, 65-91.		7
428	Practical Considerations for the Analysis of Ionic and Neutral Organic Molecules With Capillary Electrophoresis/Mass Spectrometry., 2008, 384, 135-156.		3
429	Analysis of the Enantiomers of Chiral Pesticides and Other Pollutants in Environmental Samples by Capillary Electrophoresis., 2008, 384, 157-170.		11
430	Quorum Sensing in Root-Associated and Endopytic Diazotrophs. Current Plant Science and Biotechnology in Agriculture, 2008, , 313-315.	0.0	0
431	Capillary electrophoresis., 2007,, 561-597.		4
432	Rapid biotic molecular transformation of fulvic acids in a karst aquifer. Geochimica Et Cosmochimica Acta, 2007, 71, 5474-5482.	1.6	66

#	Article	IF	Citations
433	Photolysis Pathway of Imazapic in Aqueous Solution: Ultrahigh Resolution Mass Spectrometry Analysis of Intermediates. Journal of Agricultural and Food Chemistry, 2007, 55, 9936-9943.	2.4	21
434	Optimization of Gradient Elution in UPLC: A Core Study on the Separation of Homoserine Lactones Produced by <i>Bukholderia Ubonensis</i> and Structure Confirmation with Ultra High Resolution Mass Spectrometry. Journal of Liquid Chromatography and Related Technologies, 2007, 30, 2515-2531.	0.5	6
435	Capillary Electrophoretic-Ultraviolet Method for the Separation and Estimation of Zineb, Maneb, and Ferbam in Food Samples. Journal of AOAC INTERNATIONAL, 2007, 90, 834-837.	0.7	7
436	A database of naturally occurring human urinary peptides and proteins for use in clinical applications. Nature Precedings, 2007, , .	0.1	0
437	Determination of Quats in Beverages and Urine Samples by Capillary Zone Eletrophoresis. Annali Di Chimica, 2007, 97, 1157-1167.	0.6	2
438	The hydrolysis of unsubstituted N-acylhomoserine lactones to their homoserine metabolites. Journal of Chromatography A, 2007, 1160, 184-193.	1.8	38
439	Peptidomic analysis of rat urine using capillary electrophoresis coupled to mass spectrometry. Proteomics - Clinical Applications, 2007, 1, 650-660.	0.8	24
440	Exploration of intraclonal adaptation mechanisms of <i>Pseudomonas brassicacearum</i> facing cadmium toxicity. Environmental Microbiology, 2007, 9, 2820-2835.	1.8	43
441	Identification of bacterial N-acylhomoserine lactones (AHLs) with a combination of ultra-performance liquid chromatography (UPLC), ultra-high-resolution mass spectrometry, and in-situ biosensors. Analytical and Bioanalytical Chemistry, 2007, 387, 455-467.	1.9	83
442	The dosage of small volumes for chromatographic quantifications using a drop-on-demand dispenser system. Analytical and Bioanalytical Chemistry, 2007, 388, 1109-1116.	1.9	20
443	Characterization of imazamox degradation by-products by using liquid chromatography mass spectrometry and high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Analytical and Bioanalytical Chemistry, 2007, 389, 1459-1467.	1.9	36
444	At-line coupling of UPLC to chip-electrospray-FTICR-MS. Analytical and Bioanalytical Chemistry, 2007, 389, 1439-1446.	1.9	20
445	High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems. Analytical and Bioanalytical Chemistry, 2007, 389, 1311-1327.	1.9	267
446	Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum) Tj ETQqO 0 1447-1457.	0 o rgBT /C 1.9	overlock 10 Tf 98
447	Ultrahigh resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2007, 389, 1309-1310.	1.9	11
448	The role of humic substances in chromium sorption onto natural organic matter (peat). Chemosphere, 2006, 63, 1974-1982.	4.2	42
449	Characterization of a major refractory component of marine dissolved organic matter. Geochimica Et Cosmochimica Acta, 2006, 70, 2990-3010.	1.6	731
450	Development and application of a method for the analysis of N-acylhomoserine lactones by solid-phase extraction and ultra high pressure liquid chromatography. Journal of Chromatography A, 2006, 1134, 186-193.	1.8	72

#	Article	IF	CITATIONS
451	Modeling the binding of triazine herbicides to humic substances using capillary electrophoresis. Environmental Chemistry Letters, 2006, 4, 15-21.	8.3	10
452	Novel degradation products of the herbicide oxasulfuron identified by capillary electrophoresis – mass spectrometry. Environmental Chemistry Letters, 2006, 4, 225-228.	8.3	4
453	Development of a capillary electrophoretic method for the analysis of low-molecular-weight amines from metal working fluid aerosols and ambient air. Electrophoresis, 2006, 27, 1237-1247.	1.3	19
454	Development of a capillary electrophoresis-mass spectrometry method for the determination of formaldehyde releasers as their hydrolysis products and amino alcohols from metal working fluids. Electrophoresis, 2006, 27, 2216-2224.	1.3	5
455	Capillary electrophoresis - mass spectrometry: Survey on developments and applications 2003-2004. Electrophoresis, 2005, 26, 1209-1220.	1.3	100
456	Analysis of N-acylhomoserine lactones after alkaline hydrolysis and anion-exchange solid-phase extraction by capillary zone electrophoresis-mass spectrometry. Electrophoresis, 2005, 26, 1523-1532.	1.3	40
457	Editorial: Electrophoresis 7-8/2005. Electrophoresis, 2005, 26, 1207-1207.	1.3	2
458	Two new major subunits in the cellulosome of Clostridium thermocellum: xyloglucanase Xgh74A and endoxylanase Xyn10D. Microbiology (United Kingdom), 2005, 151, 3395-3401.	0.7	56
459	Design of Quinonoid-Enriched Humic Materials with Enhanced Redox Properties. Environmental Science & E	4.6	72
460	A Review on Solid Phase Micro Extraction—High Performance Liquid Chromatography (SPME-HPLC) Analysis of Pesticides. Critical Reviews in Analytical Chemistry, 2005, 35, 71-85.	1.8	161
461	Reduction of Cr(VI) by peat and coal humic substances. Environmental Chemistry Letters, 2004, 2, 141-145.	8.3	61
462	Separation of acidic and basic compounds in capillary electrochromatography with polymethacrylate-based monolithic columns. Journal of Chromatography A, 2004, 1035, 265-270.	1.8	30
463	Key site variables governing the functional characteristics of Dissolved Natural Organic Matter (DNOM) in Nordic forested catchments. Aquatic Sciences, 2004, 66, 195-210.	0.6	49
464	A simple and robust set-up for on-column sample preconcentration? nano-liquid chromatography? electrospray ionization mass spectrometry for the analysis of N-acylhomoserine lactones. Analytical and Bioanalytical Chemistry, 2004, 378, 1014-1020.	1.9	47
465	Direct analysis of selectedN-acyl-L-homoserine lactones by gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 1341-1344.	0.7	66
466	On-line concentration of neutral and charged species in capillary electrochromatography with a methacrylate-based monolithic stationary phase. Electrophoresis, 2004, 25, 421-427.	1.3	33
467	Rapid separation of nucleosides by capillary electrochromatography with a methacrylate-based monolithic stationary phase. Chromatographia, 2003, 57, 629-633.	0.7	22
468	Abnormal phenomenon of the dependence of the retention factors for uncharged species on applied voltage in capillary electrochromatography. Chromatographia, 2003, 57, 777-781.	0.7	4

#	Article	IF	CITATIONS
469	Evaluation of glycoalkaloids in tubers of genetically modified virus Y-resistant potato plants (var.) Tj ETQq1 1 0.784		/Overlock 1 43
469	spectrometry (NACE–ESI–MS). Analytical and Bioanalytical Chemistry, 2003, 375, 799-804.	1.9	13
470	Capillary electrophoresis– electrospray ionization– mass spectrometry for the characterization of natural organic matter: An evaluation with free flow electrophoresis-off-line flow injection electrospray ionization-mass spectrometry. Electrophoresis, 2003, 24, 3057-3066.	1.3	25
471	Analysis ofN-acyl-L-homoserine lactones produced byBurkholderia cepacia with partial filling micellar electrokinetic chromatography– electrospray ionization-ion trap mass spectrometry. Electrophoresis, 2003, 24, 3067-3074.	1.3	50
472	Capillary electrophoresis– mass spectrometry: 15 years of developments and applications. Electrophoresis, 2003, 24, 3837-3867.	1.3	271
473	Separation of selected humic degradation compounds by capillary electrochromatography with monolithic and packed columns. Electrophoresis, 2003, 24, 958-969.	1.3	29
474	Capillary zone electrophoresis of natural organic matter. Journal of Chromatography A, 2003, 998, 1-20.	1.8	40
475	Comment on "Determination of Electrophoretic Mobilities and Hydrodynamic Radii of Three Humic Substances as a Function of pH and Ionic Strength― Environmental Science & December 2002, 36, 3041-3042.	4.6	6
476	Utilization and Transformation of Aquatic Humic Substances by Autochthonous Microorganisms. Environmental Science & Environmen	4.6	91
477	Up-scaling capillary zone electrophoresis separations of polydisperse anionic polyelectrolytes with preparative free-flow electrophoresis exemplified with a soil fulvic acid. Electrophoresis, 2002, 23, 2872-2879.	1.3	12
478	Determination of glycoalkaloids and relative aglycones by nonaqueous capillary electrophoresis coupled with electrospray ionization-ion trap mass spectrometry. Electrophoresis, 2002, 23, 2904-2912.	1.3	61
479	Dissipation of racemic mecoprop and dichlorprop and their pure R-enantiomers in three calcareous soils with and without peat addition. Environmental Pollution, 2001, 111, 209-215.	3.7	61
480	Partial-filling micellar electrokinetic chromatography and non-aqueous capillary electrophoresis for the analysis of selected agrochemicals. Fresenius' Journal of Analytical Chemistry, 2001, 371, 25-34.	1.5	19
481	Quantitative and qualitative precision improvements by effective mobility-scale data transformation in capillary electrophoresis analysis. Electrophoresis, 2001, 22, 77-87.	1.3	66
482	Analysis of agrochemicals by capillary electrophoresis. Journal of Chromatography A, 2000, 891, 45-67.	1.8	95
483	Analysis of cyanogenic glycosides by micellar capillary electrophoresis. Biomedical Applications, 2000, 739, 95-100.	1.7	19
484	Mobility Distribution of Synthetic and Natural Polyelectrolytes with Capillary Zone Electrophoresis. Journal of AOAC INTERNATIONAL, 1999, 82, 1594-1603.	0.7	24
485	Development of capillary electrophoresis methods for the analysis of fluoroquinolones and application to the study of the influence of humic substances on their photodegradation in aqueous phase. Journal of Chromatography A, 1999, 837, 253-265.	1.8	120
486	Interactions of hydroxy-s-triazines with sodium dodecyl sulfate-micelles investigated by micellar capillary electrophoresis. Electrophoresis, 1999, 20, 1568-1577.	1.3	20

#	Article	IF	CITATIONS
487	Capillary zone electrophoretic studies on Norwegian surface water natural organic matter. Environment International, 1999, 25, 259-274.	4.8	15
488	Analysis of synthetic humic substances for medical and environmental applications by capillary zone electrophoresis. Analusis - European Journal of Analytical Chemistry, 1999, 27, 390-395.	0.4	8
489	Capillary electrophoresis for the simultaneous separation of selected carboxylated carbohydrates and their related 1,4-lactones. Journal of Chromatography A, 1998, 807, 89-100.	1.8	36
490	Capillary electrophoresis in the analysis of humic substances. Journal of Chromatography A, 1998, 807, 101-109.	1.8	69
491	Reductive splitting of humic substances with dry hydrogen iodide. Organic Geochemistry, 1998, 28, 325-336.	0.9	5
492	Structural Changes in a Dissolved Soil Humic Acid during Photochemical Degradation Processes under O2and N2Atmosphere. Environmental Science & Environmental Science & 2531-2541.	4.6	152
493	Influence of Borate Buffers on the Electrophoretic Behavior of Humic Substances in Capillary Zone Electrophoresis. Analytical Chemistry, 1998, 70, 3798-3808.	3.2	76
494	Le vieillissement du vin : une question d'obturation ?. IVES Technical Reviews Vine and Wine, 0, , .	0.0	0
495	Characterization of landfill leachate molecular composition using ultrahigh resolution mass spectrometry. Environmental Science: Water Research and Technology, 0, , .	1.2	13
496	Tardi-magmatic precipitation of Martian Fe/Mg-rich clay minerals via igneous differentiation. Geochemical Perspectives Letters, 0, , 47-52.	1.0	9
497	Modern Electrophoretic Techniques for the Characterisation of Natural Organic Matter. , 0, , 277-313.		4
498	Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems $\hat{a} \in A$ Selection of Case Studies. Frontiers in Microbiology, 0, 13, .	1.5	10
499	Controls on Reactive Oxygen Species Cycles in Yellowstone Hot Springs: Implications for Biosignature Preservation on Mars. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	0