Peixun Xiong

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7575488/peixun-xiong-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58	3,208 citations	28	56
papers		h-index	g-index
66 ext. papers	4,258 ext. citations	11.6 avg, IF	5.88 L-index

#	Paper	IF	Citations
58	Flexible, robust and washable bacterial cellulose/silver nanowire conductive paper for high-performance electromagnetic interference shielding. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 960-968	13	3
57	Rhenium induced electronic structure modulation of Ni3S2/N-doped graphene for efficient trifunctional electrocatalysis. <i>Composites Part B: Engineering</i> , 2022 , 234, 109670	10	2
56	Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. <i>Applied Physics Reviews</i> , 2022 , 9, 011401	17.3	4
55	Structural engineering of tin sulfides anchored on nitrogen/phosphorus dual-doped carbon nanofibres in sodium/potassium-ion batteries. <i>Carbon</i> , 2022 , 189, 46-56	10.4	12
54	Structure engineering of BiSbSx nanocrystals embedded within sulfurized polyacrylonitrile fibers for high performance of potassium-ion batteries <i>Chemistry - A European Journal</i> , 2022 ,	4.8	1
53	Soluble Organic Cathodes Enable Long Cycle Life, High Rate and Wide-temperature Lithium-ion Batteries. <i>Advanced Materials</i> , 2021 , e2107226	24	8
52	Layered Double Hydroxide Quantum Dots for Use in a Bifunctional Separator of Lithium-Sulfur Batteries. <i>ACS Applied Materials & Documents amp; Interfaces</i> , 2021 , 13, 17978-17987	9.5	9
51	Highly Potassiophilic Carbon Nanofiber Paper Derived from Bacterial Cellulose Enables Ultra-Stable Dendrite-Free Potassium Metal Anodes. <i>ACS Applied Materials & Description (Company)</i> , 13, 17629-17638	9.5	6
50	Ultrathin, Strong, and Highly Flexible TiCT MXene/Bacterial Cellulose Composite Films for High-Performance Electromagnetic Interference Shielding. <i>ACS Nano</i> , 2021 , 15, 8439-8449	16.7	44
49	Electronically coupled layered double hydroxide/MXene quantum dot metallic hybrids for high-performance flexible zinclir batteries. <i>Informal</i> d Materilly, 2021 , 3, 1134	23.1	22
48	Unveiling Trifunctional Active Sites of a Heteronanosheet Electrocatalyst for Integrated Cascade Battery/Electrolyzer Systems. <i>ACS Energy Letters</i> , 2021 , 6, 2460-2468	20.1	7
47	2D MOF-derived CoS1.097 nanoparticle embedded S-doped porous carbon nanosheets for high performance sodium storage. <i>Chemical Engineering Journal</i> , 2021 , 405, 126638	14.7	7
46	A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries. <i>Science China Chemistry</i> , 2021 , 64, 72-81	7.9	15
45	Two-Dimensional Pseudocapacitive Nanomaterials for High-Energy- and High-Power-Oriented Applications of Supercapacitors. <i>Accounts of Materials Research</i> , 2021 , 2, 86-96	7.5	8
44	Algal residues-engaged formation of novel WVO4/V3Se4 hybrid nanostructure with carbon fiber confinement for enhanced long-term cycling stability in sodium/potassium storage. <i>Journal of Alloys and Compounds</i> , 2021 , 892, 162177	5.7	2
43	V3Se4 embedded within N/P co-doped carbon fibers for sodium/potassium ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 419, 129607	14.7	22
42	Co-construction of sulfur vacancies and carbon confinement in VS/CNFs to induce an ultra-stable performance for half/full sodium-ion and potassium-ion batteries. <i>Nanoscale</i> , 2021 , 13, 5033-5044	7.7	31

(2019-2020)

41	In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11992-11998	16.4	37	
40	Thiourea-based polyimide/RGO composite cathode: A comprehensive study of storage mechanism with alkali metal ions. <i>Science China Materials</i> , 2020 , 63, 1929-1938	7.1	10	
39	Titelbild: A Redox-Active 2D Metal©rganic Framework for Efficient Lithium Storage with Extraordinary High Capacity (Angew. Chem. 13/2020). <i>Angewandte Chemie</i> , 2020 , 132, 5005-5005	3.6		
38	Rational Molecular Design of Benzoquinone-Derived Cathode Materials for High-Performance Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 1909597	15.6	37	
37	Efficient polysulfide trapping enabled by a polymer adsorbent in lithium-sulfur batteries. <i>Electrochimica Acta</i> , 2020 , 336, 135693	6.7	11	
36	In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 12090-12096	3.6	8	
35	A Redox-Active 2D Metal©rganic Framework for Efficient Lithium Storage with Extraordinary High Capacity. <i>Angewandte Chemie</i> , 2020 , 132, 5311-5315	3.6	25	
34	A Redox-Active 2D Metal-Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5273-5277	16.4	94	
33	Bismuth-Antimony Alloy Nanoparticle@Porous Carbon Nanosheet Composite Anode for High-Performance Potassium-Ion Batteries. <i>ACS Nano</i> , 2020 , 14, 1018-1026	16.7	110	
32	Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries. <i>Energy Storage Materials</i> , 2020 , 25, 324-333	19.4	44	
31	Facile fabrication of a vanadium nitride/carbon fiber composite for half/full sodium-ion and potassium-ion batteries with long-term cycling performance. <i>Nanoscale</i> , 2020 , 12, 10693-10702	7.7	18	
30	An ultra-small few-layer MoS-hierarchical porous carbon fiber composite obtained via nanocasting synthesis for sodium-ion battery anodes with excellent long-term cycling performance. <i>Dalton Transactions</i> , 2019 , 48, 4149-4156	4.3	41	
29	Room-Temperature Potassium-Sulfur Batteries Enabled by Microporous Carbon Stabilized Small-Molecule Sulfur Cathodes. <i>ACS Nano</i> , 2019 , 13, 2536-2543	16.7	65	
28	Electrospun VSe/CNF composite with excellent performance for alkali metal ion batteries. <i>Nanoscale</i> , 2019 , 11, 16308-16316	7.7	34	
27	Bismuth Nanoparticle@Carbon Composite Anodes for Ultralong Cycle Life and High-Rate Sodium-Ion Batteries. <i>Advanced Materials</i> , 2019 , 31, e1904771	24	118	
26	Molten Lithium-Filled Three-Dimensional Hollow Carbon Tube Mats for Stable Lithium Metal Anodes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8303-8309	6.1	11	
25	Optimization of Molecular Structure and Electrode Architecture of Anthraquinone-Containing Polymer Cathode for High-Performance Lithium-Ion Batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 42305-42312	9.5	25	
24	Conjugated Microporous Polymers with Tunable Electronic Structure for High-Performance Potassium-Ion Batteries. <i>ACS Nano</i> , 2019 , 13, 745-754	16.7	94	

23	Long cycle life and high rate sodium-ion chemistry for hard carbon anodes. <i>Energy Storage Materials</i> , 2018 , 13, 274-282	19.4	93
22	Elucidation of the Sodium-Storage Mechanism in Hard Carbons. <i>Advanced Energy Materials</i> , 2018 , 8, 17	032187	138
21	Nitrogen-Doped Carbon Nanotubes Derived from Metal-Organic Frameworks for Potassium-Ion Battery Anodes. <i>ChemSusChem</i> , 2018 , 11, 202-208	8.3	173
20	Red Phosphorus Nanoparticle@3D Interconnected Carbon Nanosheet Framework Composite for Potassium-Ion Battery Anodes. <i>Small</i> , 2018 , 14, e1802140	11	164
19	Insight into the intercalation mechanism of WSe2 onions toward metal ion capacitors: sodium rivals lithium. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 21605-21617	13	27
18	A Polysulfide-Immobilizing Polymer Retards the Shuttling of Polysulfide Intermediates in Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2018 , 30, e1804581	24	168
17	Uniformly Dispersed Freestanding Carbon Nanofiber/Graphene Electrodes Made by a Scalable Biological Method for High-Performance Flexible Supercapacitors. <i>Advanced Functional Materials</i> , 2018 , 28, 1803075	15.6	69
16	Inverse-vulcanization of vinyl functionalized covalent organic frameworks as efficient cathode materials for LiB batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 17977-17981	13	91
15	Recent research progress in non-aqueous potassium-ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 26495-26506	3.6	149
14	High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. Journal of Materials Chemistry A, 2017 , 5, 19237-19244	13	159
13	Nitrogen-doped carbon coated silicon derived from a facile strategy with enhanced performance for lithium storage. <i>Functional Materials Letters</i> , 2016 , 09, 1650055	1.2	4
12	Hierarchical cerium oxide derived from metal-organic frameworks for high performance supercapacitor electrodes. <i>Electrochimica Acta</i> , 2016 , 222, 773-780	6.7	85
11	Nanocomposite Li3V2(PO4)3/carbon as a cathode material with high rate performance and long-term cycling stability in lithium-ion batteries. <i>RSC Advances</i> , 2015 , 5, 57127-57132	3.7	12
10	Ultrathin TiO2-B nanowires with enhanced electrochemical performance for Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10038-10044	13	35
9	Prussian blue analogues Mn[Fe(CN)6]0.6667[hH2O cubes as an anode material for lithium-ion batteries. <i>Dalton Transactions</i> , 2015 , 44, 16746-51	4.3	72
8	Pseudo-capacitive performance of titanate nanotubes as a supercapacitor electrode. <i>Chemical Communications</i> , 2014 , 50, 5973-5	5.8	36
7	Zn-doped Ni-MOF material with a high supercapacitive performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19005-19010	13	300
6	MetalBrganic frameworks: a new promising class of materials for a high performance supercapacitor electrode. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16640-16644	13	384

LIST OF PUBLICATIONS

5	Facile synthesis of hierarchical MnO2 sub-microspheres composed of nanosheets and their application for supercapacitors. <i>RSC Advances</i> , 2014 , 4, 40753-40757	3.7	33
4	Electrospun conductive carbon nanofiber hosts for stable zinc metal anode. <i>International Journal of Energy Research</i> ,	4.5	1
3	In-situ electropolymerized bipolar organic cathode for stable and high-rate lithium-ion batteries. <i>Science China Materials</i> ,1	7.1	4
2	Microbial Disinfection with Supercoiling Capacitive Triboelectric Nanogenerator. <i>Advanced Energy Materials</i> ,2103680	21.8	3
1	High-Rate, Large Capacity, and Long Life Dendrite-Free Zn Metal Anode Enabled by Trifunctional Electrolyte Additive with a Wide Temperature Range. <i>Advanced Science</i> , 2201433	13.6	8