J Douglas Goetz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7575460/publications.pdf

Version: 2024-02-01

10 papers	583 citations	1163117 8 h-index	10 g-index
papero	Citations	II IIICA	g muca
12 all docs	12 docs citations	12 times ranked	1302 citing authors

#	Article	IF	Citations
1	First Superâ€Pressure Balloonâ€Borne Fineâ€Verticalâ€Scale Profiles in the Upper TTL: Impacts of Atmospheric Waves on Cirrus Clouds and the QBO. Geophysical Research Letters, 2022, 49, .	4.0	7
2	A reel-down instrument system for profile measurements of water vapor, temperature, clouds, and aerosol beneath constant-altitude scientific balloons. Atmospheric Measurement Techniques, 2021, 14, 2635-2648.	3.1	6
3	Chemical and Physical Characterization of 3D Printer Aerosol Emissions with and without a Filter Attachment. Environmental Science & Environmental Sci	10.0	21
4	Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of particulate matter from wood- and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmospheric Chemistry and Physics, 2018, 18, 2259-2286.	4.9	106
5	The importance of blowing snow to halogen-containing aerosol in coastal Antarctica: influence of source region versus wind speed. Atmospheric Chemistry and Physics, 2018, 18, 16689-16711.	4.9	19
6	Speciated online PM ₁ from South Asian combustion sources – PartÂ1: Fuel-based emission factors and size distributions. Atmospheric Chemistry and Physics, 2018, 18, 14653-14679.	4.9	38
7	A missing source of aerosols in Antarctica – beyond long-range transport, phytoplankton, and photochemistry. Atmospheric Chemistry and Physics, 2017, 17, 1-20.	4.9	173
8	Analysis of local-scale background concentrations of methane and other gas-phase species in the Marcellus Shale. Elementa, 2017, 5, .	3.2	25
9	Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmospheric Chemistry and Physics, 2016, 16, 11043-11081.	4.9	131
10	Atmospheric Emission Characterization of Marcellus Shale Natural Gas Development Sites. Environmental Science & Environmental	10.0	57