Shyamal C Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7575320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of methionine in inhalable High-dose Spray-dried amorphous composite particles using response surface Method, infrared and low frequency Raman spectroscopy. International Journal of Pharmaceutics, 2022, 614, 121446.	5.2	3
2	Amino acids improve aerosolization and chemical stability of potential inhalable amorphous Spray-dried ceftazidime for Pseudomonas aeruginosa lung infection. International Journal of Pharmaceutics, 2022, 621, 121799.	5.2	8
3	An expert opinion on respiratory delivery of high dose powders for lung infections. Expert Opinion on Drug Delivery, 2022, 19, 795-813.	5.0	4
4	Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder. Pharmaceutics, 2022, 14, 1432.	4.5	7
5	Simulation of respiratory tract lining fluid for in vitro dissolution study. Expert Opinion on Drug Delivery, 2021, 18, 1091-1100.	5.0	3
6	Studies on the safety and the tissue distribution of inhaled high-dose amorphous and crystalline rifampicin in a rat model. International Journal of Pharmaceutics, 2021, 597, 120345.	5.2	8
7	Perspective: the nose and the stomach play a critical role in the NZACE2-PÄŧari* (modified ACE2) drug treatment project of SARS-CoV-2 infection. Expert Review of Clinical Immunology, 2021, 17, 553-560.	3.0	10
8	Pharmacokinetics of rifampicin after repeated intra-tracheal administration of amorphous and crystalline powder formulations to Sprague Dawley rats. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 162, 1-11.	4.3	11
9	Roflumilast Powders for Chronic Obstructive Pulmonary Disease: Formulation Design and the Influence of Device, Inhalation Flow Rate, and Storage Relative Humidity on Aerosolization. Pharmaceutics, 2021, 13, 1254.	4.5	7
10	A study on polymorphic forms of rifampicin for inhaled high dose delivery in tuberculosis treatment. International Journal of Pharmaceutics, 2020, 587, 119602.	5.2	17
11	Co-Amorphization of Kanamycin with Amino Acids Improves Aerosolization. Pharmaceutics, 2020, 12, 715.	4.5	12
12	Inhaled modified angiotensin converting enzyme 2 (ACE2) as a decoy to mitigate SARS-CoV-2 infection. New Zealand Medical Journal, 2020, 133, 112-118.	0.5	7
13	Dry powder formulation combining bedaquiline with pyrazinamide for latent and drug-resistant tuberculosis. Advanced Powder Technology, 2019, 30, 2473-2482.	4.1	8
14	The influence of storage relative humidity on aerosolization of co-spray dried powders of hygroscopic kanamycin with the hydrophobic drug rifampicin. Drug Development and Industrial Pharmacy, 2019, 45, 1205-1213.	2.0	2
15	Bedaquiline containing triple combination powder for inhalation to treat drug-resistant tuberculosis. International Journal of Pharmaceutics, 2019, 570, 118689.	5.2	19
16	Inhalable Dry Powder of Bedaquiline for Pulmonary Tuberculosis: In Vitro Physicochemical Characterization, Antimicrobial Activity and Safety Studies. Pharmaceutics, 2019, 11, 502.	4.5	24
17	In vitro dissolution testing of respirable size anti-tubercular drug particles using a small volume dissolution apparatus. International Journal of Pharmaceutics, 2019, 559, 235-244.	5.2	20
18	Crystalline adduct of moxifloxacin with trans-cinnamic acid to reduce the aqueous solubility and dissolution rate for improved residence time in the lungs. European Journal of Pharmaceutical Sciences, 2019, 136, 104961.	4.0	20

SHYAMAL C DAS

#	Article	IF	CITATIONS
19	Carrier-free combination dry powder inhaler formulation of ethionamide and moxifloxacin for treating drug-resistant tuberculosis. Drug Development and Industrial Pharmacy, 2019, 45, 1321-1331.	2.0	17
20	A STELLA simulation model for in vitro dissolution testing of respirable size particles. Scientific Reports, 2019, 9, 18522.	3.3	10
21	Development and validation of a RP-HPLC method for simultaneous quantification of bedaquiline (TMC207), moxifloxacin and pyrazinamide in a pharmaceutical powder formulation for inhalation. Journal of Liquid Chromatography and Related Technologies, 2018, 41, 415-421.	1.0	11
22	Development and characterization of high payload combination dry powders of anti-tubercular drugs for treating pulmonary tuberculosis. European Journal of Pharmaceutical Sciences, 2018, 118, 216-226.	4.0	24
23	Manipulation of spray-drying conditions to develop dry powder particles with surfaces enriched in hydrophobic material to achieve high aerosolization of a hygroscopic drug. International Journal of Pharmaceutics, 2018, 543, 318-327.	5.2	31
24	Co-spray drying of hygroscopic kanamycin with the hydrophobic drug rifampicin to improve the aerosolization of kanamycin powder for treating respiratory infections. International Journal of Pharmaceutics, 2018, 541, 26-36.	5.2	36
25	The influence of surface active l-leucine and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) in the improvement of aerosolization of pyrazinamide and moxifloxacin co-spray dried powders. International Journal of Pharmaceutics, 2018, 542, 72-81.	5.2	43
26	The respiratory delivery of high dose dry powders. International Journal of Pharmaceutics, 2018, 550, 486-487.	5.2	3
27	High dose dry powder inhalers to overcome the challenges of tuberculosis treatment. International Journal of Pharmaceutics, 2018, 550, 398-417.	5.2	34
28	Considerations in preparing for clinical studies of inhaled rifampicin to enhance tuberculosis treatment. International Journal of Pharmaceutics, 2018, 548, 244-254.	5.2	17
29	Dry powder formulation of kanamycin with enhanced aerosolization efficiency for drug-resistant tuberculosis. International Journal of Pharmaceutics, 2017, 528, 107-117.	5.2	41
30	Simultaneous HPLC assay for pretomanid (PA-824), moxifloxacin and pyrazinamide in an inhaler formulation for drug-resistant tuberculosis. Journal of Pharmaceutical and Biomedical Analysis, 2017, 135, 133-139.	2.8	7
31	Phospholipid-based pyrazinamide spray-dried inhalable powders for treating tuberculosis. International Journal of Pharmaceutics, 2016, 506, 174-183.	5.2	36
32	The influence of lung surfactant liquid crystalline nanostructures on respiratory drug delivery. International Journal of Pharmaceutics, 2016, 514, 465-474.	5.2	23
33	The Kinetics of De-agglomeration of Magnesium Stearate Dry-Coated Salbutamol Sulphate Powders. KONA Powder and Particle Journal, 2015, 32, 131-142.	1.7	4
34	A view on the less-than-rational development of drug delivery systems – The example of dry powder inhalers. Journal of Drug Delivery Science and Technology, 2015, 30, 310-317.	3.0	4
35	Surface Energy Determined by Inverse Gas Chromatography as a Tool to Investigate Particulate Interactions in Dry Powder Inhalers. Current Pharmaceutical Design, 2015, 21, 3932-3944. 	1.9	10
36	Inhaled Dry Powder Formulations for Treating Tuberculosis. Current Drug Delivery, 2015, 12, 26-39.	1.6	42

SHYAMAL C DAS

#	Article	IF	CITATIONS
37	Importance of particle size and shape on the tensile strength distribution and de-agglomeration of cohesive powders. Powder Technology, 2013, 249, 297-303.	4.2	19
38	Improving the de-agglomeration and dissolution of a poorly water soluble drug by decreasing the agglomerate strength of the cohesive powder. International Journal of Pharmaceutics, 2013, 457, 101-109.	5.2	9
39	Characterising surface energy of pharmaceutical powders by inverse gas chromatography at finite dilution. Journal of Pharmacy and Pharmacology, 2012, 64, 1337-1348.	2.4	37
40	Powder Strength Distributions for Understanding De-agglomeration of Lactose Powders. Pharmaceutical Research, 2012, 29, 2926-2935.	3.5	22
41	Determination of the Polar and Total Surface Energy Distributions of Particulates by Inverse Gas Chromatography. Langmuir, 2011, 27, 521-523.	3.5	79
42	Use of surface energy distributions by inverse gas chromatography to understand mechanofusion processing and functionality of lactose coated with magnesium stearate. European Journal of Pharmaceutical Sciences, 2011, 43, 325-333.	4.0	42
43	Characterization of the surface properties of a model pharmaceutical fine powder modified with a pharmaceutical lubricant to improve flow via a mechanical dry coating approach. Journal of Pharmaceutical Sciences, 2011, 100, 3421-3430.	3.3	73
44	Understanding lactose behaviour during storage by monitoring surface energy change using inverse gas chromatography. Dairy Science and Technology, 2010, 90, 271-285.	2.2	17
45	Magnesium stearate increases salbutamol sulphate dispersion: What is the mechanism?. International Journal of Pharmaceutics, 2010, 383, 62-69.	5.2	37
46	Agglomerate properties and dispersibility changes of salmeterol xinafoate from powders for inhalation after storage at high relative humidity. European Journal of Pharmaceutical Sciences, 2009, 37, 442-450.	4.0	23
47	Surface energy changes and their relationship with the dispersibility of salmeterol xinafoate powders for inhalation after storage at high RH. European Journal of Pharmaceutical Sciences, 2009, 38, 347-354.	4.0	30
48	Influence of Storage Relative Humidity on the Dispersion of Salmeterol Xinafoate Powders for Inhalation. Journal of Pharmaceutical Sciences, 2009, 98, 1015-1027.	3.3	27