
Rachel Carter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/757509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sodiation-Induced Electrochromism in Carbon Nanofoam–Paper Electrodes. Journal of the Electrochemical Society, 2022, 169, 060514.	2.9	2
2	Mechanistic underpinnings of thermal gradient induced inhomogeneity in lithium plating. Energy Storage Materials, 2021, 35, 500-511.	18.0	41
3	Directionality of thermal gradients in lithium-ion batteries dictates diverging degradation modes. Cell Reports Physical Science, 2021, 2, 100351.	5.6	29
4	Accelerating Rate Calorimetry and Complementary Techniques to Characterize Battery Safety Hazards. Journal of Visualized Experiments, 2021, , .	0.3	0
5	Optical Microscopy Reveals the Ambient Sodium–Sulfur Discharge Mechanism. ACS Sustainable Chemistry and Engineering, 2021, 9, 92-100.	6.7	6
6	Initiated Chemical Vapor Deposition of Ultrathin Polymer Coatings at Graphite Electrodes for Enhanced Performance in Li-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 060510.	2.9	10
7	In Operando Detection of the Onset and Mapping of Lithium Plating Regimes during Fast Charging of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 30438-30448.	8.0	60
8	Operational strategy to stabilize lithium metal anodes by applied thermal gradient. Energy Storage Materials, 2019, 22, 18-28.	18.0	13
9	Mechanical collapse as primary degradation mode in mandrel-free 18650 Li-ion cells operated at 0†°C. Journal of Power Sources, 2019, 437, 226820.	7.8	27
10	Detection of Lithium Plating During Thermally Transient Charging of Li-Ion Batteries. Frontiers in Energy Research, 2019, 7, .	2.3	17
11	Electrolyte Confinement Alters Lithium Electrodeposition. ACS Energy Letters, 2019, 4, 156-162.	17.4	65
12	Modulation of Lithium Plating in Li-Ion Batteries with External Thermal Gradient. ACS Applied Materials & Interfaces, 2018, 10, 26328-26334.	8.0	45
13	Anode-Free Sodium Battery through in Situ Plating of Sodium Metal. Nano Letters, 2017, 17, 1296-1301.	9.1	248
14	A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability. Nano Letters, 2017, 17, 1863-1869.	9.1	220
15	Role of carbon defects in the reversible alloying states of red phosphorus composite anodes for efficient sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 5266-5272.	10.3	30
16	Polysulfide Anchoring Mechanism Revealed by Atomic Layer Deposition of V ₂ O ₅ and Sulfur-Filled Carbon Nanotubes for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 7185-7192.	8.0	100
17	Sulfur Vapor-Infiltrated 3D Carbon Nanotube Foam for Binder-Free High Areal Capacity Lithium–Sulfur Battery Composite Cathodes. ACS Nano, 2017, 11, 4877-4884.	14.6	235
18	Isothermal Sulfur Condensation into Carbon Scaffolds: Improved Loading, Performance, and Scalability for Lithium–Sulfur Battery Cathodes, Journal of Physical Chemistry C. 2017, 121, 7718-7727	3.1	28

RACHEL CARTER

#	Article	IF	CITATIONS
19	A high areal capacity lithium–sulfur battery cathode prepared by site-selective vapor infiltration of hierarchical carbon nanotube arrays. Nanoscale, 2017, 9, 15018-15026.	5.6	35
20	Strain Engineering to Modify the Electrochemistry of Energy Storage Electrodes. Scientific Reports, 2016, 6, 27542.	3.3	42
21	Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes. ACS Central Science, 2016, 2, 162-168.	11.3	147
22	Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons. Journal of Materials Chemistry A, 2016, 4, 14954-14959.	10.3	158
23	Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes. ACS Nano, 2016, 10, 9738-9744.	14.6	640
24	Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nature Communications, 2016, 7, 11796.	12.8	157
25	Particulate-free porous silicon networks for efficient capacitive deionization water desalination. Scientific Reports, 2016, 6, 24680.	3.3	16
26	Nanoscale defect engineering of lithium–sulfur battery composite cathodes for improved performance. Nanoscale, 2016, 8, 19368-19375.	5.6	40
27	Ultrafast Solvent-Assisted Sodium Ion Intercalation into Highly Crystalline Few-Layered Graphene. Nano Letters, 2016, 16, 543-548.	9.1	185
28	Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics. Nanoscale, 2016, 8, 7384-7390.	5.6	32
29	Corrosion resistant three-dimensional nanotextured silicon for water photo-oxidation. Nanoscale, 2015, 7, 16755-16762.	5.6	12
30	Direct integration of a supercapacitor into the backside of a silicon photovoltaic device. Applied Physics Letters, 2014, 104, .	3.3	54
31	Solution Assembled Single-Walled Carbon Nanotube Foams: Superior Performance in Supercapacitors, Lithium-Ion, and Lithium–Air Batteries. Journal of Physical Chemistry C, 2014, 118, 20137-20151.	3.1	40
32	Structural and Morphological Analysis of the First Alloy/Dealloy of a Bulk Si–Li System at Elevated Temperature. ACS Omega, 0, , .	3.5	0